{ "metadata": { "name": "", "signature": "sha256:f3dfb0a49e3f8552798e92e62c041d1f0b46371fc7dc05dfc9c1bf5833f43216" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "14: Nuclear Fission And Fusion" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.1, Page number 269" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "E1=7.8; #avg. B.E per nucleon(MeV)\n", "E2=8.6; #for fissin fragments(MeV)\n", "\n", "#Calculation\n", "FER=(234*E2)-(236*E1); #Fission energy released(MeV)\n", "\n", "#Result\n", "print \"Fission energy released is\",FER,\"MeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fission energy released is 171.6 MeV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.2, Page number 273" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m1=235.044; #mass of 92U235(a.m.u)\n", "m2=97.905; #mass of 42Mo98(a.m.u)\n", "m3=135.917; #mass of 54Xe136(a.m.u)\n", "#rxn = 0n1 + 92U235 = 42Mo98 + 54Xe136 + 4 -1e0 + 2 0n1\n", "\n", "#Calculation\n", "LHSm=1.009+m1;\n", "RHSm=m2+m3+(4*0.00055)+(2*1.009);\n", "delta_m=LHSm-RHSm; #mass defect(a.m.u)\n", "E=delta_m*931; #energy released(MeV)\n", "\n", "#Result\n", "print \"mass defect is\",round(delta_m,3),\"a.m.u\"\n", "print \"energy released is\",int(E),\"MeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass defect is 0.211 a.m.u\n", "energy released is 196 MeV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.3, Page number 274" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m1=1.00813; #mass of 1H1(a.m.u)\n", "m2=4.00386; #mass of 2He4(a.m.u)\n", "SC=1.35; #solar constant(kW/m^2)\n", "d=1.5*10**11; #distance b/w earth and sum(m)\n", "e=1.6*10**-19; #the charge on electron(C)\n", "Na=6.02*10**26; #Avgraodo no.(per kg mole)\n", "#rxn = 4 1H1 = 2He4 + 2 1e0\n", "\n", "#Calculation\n", "dm=(4*m1)-m2;\n", "E=dm*931; #energy produced(MeV)\n", "EP=E/4; #energy produced per atom(MeV)\n", "EP=EP*10**6*e; #conversion in J\n", "EPkg=EP*Na; #energy produced by 1 kg of hydrogen\n", "SC=SC*1000; #conversion(J/s-m^2)\n", "SA=4*math.pi*d**2; #surface area of sphere\n", "ER=SC*SA; #energy recieved per second\n", "m=ER/EPkg; #mass of hydrogen consumed(tonnes/second)\n", "\n", "#Result\n", "print \"mass of hydrogen consumed is\",round(m/10**11,3),\"*10**8 tonnes/second\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "mass of hydrogen consumed is 5.941 *10**8 tonnes/second\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example number 14.4, Page number 275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#import modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "m1=2.01478; #mass of 1H2(a.m.u)\n", "m2=4.00388; #mass of 2He4(a.m.u)\n", "#rxn 1H2 + 1H2 = 2He4 + Q\n", "\n", "#Calculation\n", "Q=2*m1-m2; #energy liberated(MeV) \n", "Q=Q*931; #conversion in MeV\n", "\n", "#Result\n", "print \"energy liberated is\",round(Q,1),\"MeV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "energy liberated is 23.9 MeV\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }