{ "metadata": { "name": "", "signature": "sha256:846e8e3b3770f7cb30a2e91a53718bf5de841338951843c54481c2acfda5e63d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6: Quantum Mechanics in One Dimension" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4, page no. 197" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "me = 9.11 * 10 ** -31 #mass of electron (kg)\n", "h = 1.055 * 10**-34 #h/2*pi (J.s)\n", "dx0 = 1.0 * 10**-10 #initial location of electron(m)\n", "m = 1.0 * 10**-3 #mass of marble (kg)\n", "dx0m = 10**-4 #initial location of marble (m)\n", "\n", "#Calculation\n", "\n", "te = math.sqrt(99)* (2* me / h) * dx0**2\n", "tm = math.sqrt(99)* (2* m / h) * dx0m**2\n", "\n", "#result\n", "\n", "print \"The time elapsed for electron is\",round(te/10**-15,1),\"X 10^-15 s and that of marble is \",round(tm/10**24,1),\"X 10^24 s.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The time elapsed for electron is 1.7 X 10^-15 s and that of marble is 1.9 X 10^24 s.\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5, page no. 202" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "m = 1.0 * 10 **-6 #mass (kg)\n", "h = 6.626 * 10 **-34 #Planck's constant(J.s)\n", "n = 1.0\n", "L = 1.0 * 10**-2 #separation(m)\n", "\n", "#Calculation\n", "\n", "E1 = n**2 * h**2 /(8*m*L**2)\n", "v1 = math.sqrt(2*E1/m)\n", "\n", "#result\n", "\n", "print \"(a) The minimum speed of the particle is\",round(v1/10**-26,2),\"X 10^-26 m/s.\"\n", "\n", "\n", "#Variable declaration\n", "\n", "v = 3.00 * 10**-2 #speed of the particle (m/s)\n", "\n", "#Calculation\n", "\n", "E = m* v**2 /2\n", "n = math.sqrt(8*m*L**2*E)/h\n", "\n", "#results\n", "\n", "print \"(b) We get n = \",round(n/10**23,2),\"X 10^23.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The minimum speed of the particle is 3.31 X 10^-26 m/s.\n", "(b) We get n = 9.06 X 10^23.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.6, page no. 203" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "L = 0.2 #length of the box (nm)\n", "me = 511 * 10 ** 3 #mass of electron (eV/c^2)\n", "hc = 197.3 #(eV.nm)\n", "\n", "#Calculation\n", "\n", "E1 = math.pi ** 2 * hc**2 /(2* me * L**2)\n", "E2 = 2**2 * E1\n", "dE = E2-E1\n", "lamda = hc*2*math.pi / dE\n", "\n", "#result\n", "\n", "print \"The energy required is\",round(dE,1),\"eV and the wavelength of the photon that could cause this transition is\",round(lamda),\"nm.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy required is 28.2 eV and the wavelength of the photon that could cause this transition is 44.0 nm.\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.8, page no. 211" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "h = 197.3 #(eV.nm/c)\n", "m = 511 * 10**3 #mass of electron (eV/c**2)\n", "U = 100 #(eV)\n", "L = 0.200 #width(nm)\n", "\n", "#Calculation\n", "\n", "d = h /math.sqrt(2*m*U)\n", "E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n", "new_U = U - E\n", "d = h/math.sqrt(2*m*new_U)\n", "E = math.pi**2 * h**2 /(2*m*(L+2*d)**2)\n", "\n", "#result\n", "\n", "print \"The ground-state energy for the electron is\",round(E,3),\"eV.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ground-state energy for the electron is 6.506 eV.\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.13, page no. 217" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "m = 0.0100 #mass of the spring (kg)\n", "K = 0.100 #force constant of spring (N/m)\n", "Kh = 510.5 #force constant of hydrogen (N/m)\n", "h = 6.582 * 10**-16#Planck's constant (eV.s)\n", "mu = 8.37 * 10**-28#mass of hydrogen molecule(kg)\n", "\n", "#calculation\n", "\n", "w = math.sqrt(K / m)\n", "dE = h * w\n", "wh =math.sqrt(Kh / mu)\n", "dEh = h * wh\n", "\n", "#results\n", "\n", "print \"The quantum level spacing in the spring case is\",round(dE/10**-15,2),\"X 10^-15 eV, while in case of hydrogen molecule it is\",round(dEh,3),\"eV which is easily measurable.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The quantum level spacing in the spring case is 2.08 X 10^-15 eV, while in case of hydrogen molecule it is 0.514 eV which is easily measurable.\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }