{ "metadata": { "name": "", "signature": "sha256:e257dccb197e3cab0c059eb9e1d236e5359e2a825fc6be941cab77026f236087" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Chapter 5: Matter Waves" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1, page no. 154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration\n", "\n", "h = 6.63 * 10 ** -34 #Planck's constant (J.s)\n", "m = 0.14 #mass of the baseball (kg)\n", "v = 27.0 #speed of the baseball (m/s)\n", "\n", "#Calculation\n", "\n", "lamda = h / (m * v)\n", "\n", "#Result\n", "\n", "print \"The de Broglie wavelength of the baseball is\",round(lamda/10**-34,2),\"X 10^-34 m.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The de Broglie wavelength of the baseball is 1.75 X 10^-34 m.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2, page no. 154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "h = 6.63 * 10 ** -34 #Planck's constant (J.s)\n", "me = 9.11 * 10 ** -31 #mass of electron (kg)\n", "q = 1.6 * 10 ** -19 #charge of electron (C)\n", "V = 50 #potential difference (V)\n", "\n", "#Calculation\n", "\n", "lamda = h / math.sqrt(2*me*q*V)\n", "\n", "#Result\n", "\n", "print \"The de Broglie wavelength of electron is\",round(lamda/10 ** -10,1),\"X 10^-10 m.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The de Broglie wavelength of electron is 1.7 X 10^-10 m.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3, page no. 158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration\n", "\n", "h = 6.63 * 10 ** -34 #Planck's constant (J.s)\n", "lamda = 1.0 * 10 ** -10 #de Broglie wavelength of the neutron (m)\n", "mn = 1.66 * 10**-27 #mass of neutrons (kg)\n", "e = 1.602 * 10 **-19 #charge of electron(C)\n", "\n", "#Calculation\n", "\n", "p = h / lamda\n", "K = p**2/(2*mn)\n", "\n", "#result\n", "\n", "print \"The kinetic energy is\",round(K/e,4),\"eV.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The kinetic energy is 0.0826 eV.\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.8, page no. 177" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable Declaration\n", "\n", "h = 1.05 * 10 ** -34 #(J.s)\n", "dx = 15 #length of the room (m)\n", "m = 0.1 #mass of the ball (kg)\n", "vx = 2.0 #velocity of the ball (m/s)\n", "\n", "#Calculation\n", "\n", "dpx = h /( 2* dx)\n", "dvx = dpx /m\n", "uncertainity = dvx/vx\n", "\n", "#Result\n", "\n", "print \"The relative uncertainty is\",round(uncertainity/10**-35,1),\"X 10^-35 which is not measurable.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The relative uncertainty is 1.8 X 10^-35 which is not measurable.\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.9, page no. 178" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "h = 6.58 * 10 ** -16 #(eV.s)\n", "dx = 1.0 * 10 ** -14 / 2.0 # dx is half the length of confinement (m)\n", "c = 3.00 * 10 ** 8 #speed of light (m/s)\n", "me = 9.11 * 10 ** -31 # mass of electron (kg)\n", "e = 1.6 * 10 ** -19 #charge of electron (C)\n", "\n", "#Calculation\n", "\n", "dpx = h * c / (2 * dx)\n", "E = math.sqrt(dpx**2 + (me * c**2/e)**2)\n", "K = E - (me * c**2/e)\n", "\n", "#result\n", "\n", "print \"The kinetic energy of an intranuclear electron is\",round(K/10**6,2),\"MeV.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The kinetic energy of an intranuclear electron is 19.23 MeV.\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.10, page no. 178" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "dt = 1.0 * 10 ** -8 #lifetime (s)\n", "\n", "#calculation\n", "\n", "df = 1/(4*math.pi*dt)\n", "\n", "#result\n", "\n", "print \"The frequency of the light emitted is\",round(df/10**6,1),\"X 10^6 Hz.\"\n", "\n", "#Variable declaration\n", "\n", "c = 3.0 * 10 ** 8 #speed of light (m/s)\n", "lamda = 500 * 10 ** -9 #wavelength (m)\n", "\n", "#Calculation\n", "\n", "f = c/ lamda\n", "df_by_f0 = df / f\n", "\n", "#result\n", "\n", "print \"The fractional broadening is\",round(df_by_f0/10**-8,1),\"X 10^-8.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The frequency of the light emitted is 8.0 X 10^6 Hz.\n", "The fractional broadening is 1.3 X 10^-8.\n" ] } ], "prompt_number": 19 } ], "metadata": {} } ] }