{ "metadata": { "name": "", "signature": "sha256:fcebe7a1b857b1b190100018ff76ede788e3c249d5181d4bebb1457ad5175559" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4: The Particle Nature of Matter" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1, page no. 109" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "\n", "I = 10.0 #current (A)\n", "t = 3600 #time (s)\n", "molar_mass_Ba = 137 #molar mass of Barium (g)\n", "valence_Ba = 2 #valence of Barium\n", "molar_mass_Cl = 35.5 #molar mass of chlorine(g)\n", "valence_Cl = 1 #valence of chlorine\n", "\n", "#Calculation\n", "\n", "mBa = I * t * molar_mass_Ba /(96500 * valence_Ba)\n", "mCl = I * t * molar_mass_Cl /(96500 * valence_Cl)\n", "\n", "#Results\n", "\n", "print \"The mass of Barium and Chlorine obtained is \",round(mBa,1),\"g\",round(mCl,1),\"g respectively.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mass of Barium and Chlorine obtained is 25.6 g 13.2 g respectively.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2, page no. 113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "V = 200 #voltage (V)\n", "theta = 0.20 #deflection (rad)\n", "l = 0.05 #length (m)\n", "d = 0.015 #spacing (m)\n", "e_by_me = 1.76 * 10 **11 #e/me (C/kg)\n", "B_earth = 0.5 * 10**-4 #earth's magnetic field (T)\n", "\n", "#Calculation\n", "\n", "B = math.sqrt(V * theta /(l * d * e_by_me))\n", "\n", "#results\n", "\n", "print \"The magnetic field required to produce the deflection is\",round(B/10**-4,1),\"X 10^-4 T\"\n", "print \" The earth's magnetic field is \",B_earth,\"T so we require\",round(B/B_earth),\"times stronger field.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The magnetic field required to produce the deflection is 5.5 X 10^-4 T\n", " The earth's magnetic field is 5e-05 T so we require 11.0 times stronger field.\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3, page no. 117" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "\n", "#Variable declaration\n", "\n", "dy = 0.006 #distance of rise or fall (m)\n", "dt = 21.0 #average time of fall (s)\n", "n = 1.83 * 10 **-5 #viscosity of air (kg/ms)\n", "p = 858 #oil density (kg/m^3)\n", "g = 9.81 #acceleration due to gravity (m/s^2)\n", "\n", "#Calculation\n", "\n", "v = dy/dt\n", "a = math.sqrt(9*n*v/(2*p*g))\n", "V = 4*math.pi*a**3/3\n", "m = p * V\n", "\n", "#results\n", "\n", "print \"The radius,volume and mass of the drop are\",round(a/10**-6,2),\"X10^-6 m,\",round(V/10**-17,2),\"X10^-17 m^3,\",round(m/10**-14,2),\"X10^-14 kg\"\n", "\n", "\n", "#Variable declaration\n", "\n", "Vt = 4550 #potential difference (V)\n", "d = 0.0160 #plate separation (m)\n", "#successive rise times(s)\n", "dt1 = 46.0\n", "dt2 = 15.5\n", "dt3 = 28.1\n", "dt4 = 12.9\n", "dt5 = 45.3\n", "dt6 = 20.0\n", "\n", "#Calculation\n", "\n", "E = Vt/d #Electric field\n", "v1 = dy / dt1\n", "v2 = dy / dt2\n", "v3 = dy / dt3\n", "v4 = dy / dt4\n", "v5 = dy / dt5\n", "v6 = dy / dt6\n", "q1 = (m*g/E)*((v+v1)/v)\n", "q2 = (m*g/E)*((v+v2)/v)\n", "q3 = (m*g/E)*((v+v3)/v)\n", "q4 = (m*g/E)*((v+v4)/v)\n", "q5 = (m*g/E)*((v+v5)/v)\n", "q6 = (m*g/E)*((v+v6)/v)\n", "\n", "#Results\n", "\n", "print \"The successive charges on the drop is as follows \\n q1 =\",round(q1/10**-19,2),\"X 10^-19 C \\n q2 = \",round(q2/10**-19,2),\"X 10^-19 C \\n q3 = \",round(q3/10**-19,2),\"X 10^-19 C \\n q4 = \",round(q4/10**-19,2),\"X 10^-19 C \\n q5 = \",round(q5/10**-19,2),\"X 10^-19 C \\n q6 = \",round(q6/10**-19,2),\"X 10^-19 C\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The radius,volume and mass of the drop are 1.67 X10^-6 m, 1.96 X10^-17 m^3, 1.68 X10^-14 kg\n", "The successive charges on the drop is as follows \n", " q1 = 8.44 X 10^-19 C \n", " q2 = 13.65 X 10^-19 C \n", " q3 = 10.12 X 10^-19 C \n", " q4 = 15.23 X 10^-19 C \n", " q5 = 8.48 X 10^-19 C \n", " q6 = 11.88 X 10^-19 C\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4, page no. 121" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable declaration\n", "\n", "ma_by_mp = 4.0 #as alpha has 2 protons and 2 neutrons\n", "\n", "#Calculation\n", "\n", "vp = (2*ma_by_mp/(ma_by_mp+1))\n", "va1 = (ma_by_mp -1)/(ma_by_mp + 1)\n", "change = (va1 - 1)*100\n", "\n", "#result\n", "\n", "print \"The percentage change in the velocity of alpha particle is\",change,\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage change in the velocity of alpha particle is -40.0 %\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5, page no. 124" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "\n", "e = 1.6 * 10 ** -19 #Charge of electron (C)\n", "Z = 13\n", "k = 8.99 * 10 ** 9 #(Nm^2/C^2)\n", "Ka = 7.7 * 10 ** 6 * e #potential energy at closest approach(J)\n", "\n", "#Calculation\n", "\n", "dmin = k * 2 * Z * e ** 2/Ka\n", "\n", "#result\n", "\n", "print \"The radius of the aluminum nucleus is\",round(dmin/10**-15,1),\"X 10^-15 m.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The radius of the aluminum nucleus is 4.9 X 10^-15 m.\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.7, page no. 135" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "\n", "R = 1.097 * 10**7 #Rydberg constant(m^-1) \n", "nf = 1.0 #energy state\n", "ni = 2.0 #energy state\n", "c = 3 * 10 ** 8 #speed of light (m/s)\n", "h = 4.136 * 10 ** -15 #Planck's constant (eV.s)\n", "\n", "#Calculation\n", "\n", "lamda = (R * ((1/nf**2) - (1/ni**2))) ** -1\n", "f = c / lamda\n", "E = h * f\n", "\n", "#Results\n", "\n", "print \"The wavelength of the emitted photon is\",round(lamda/10**-9,2),\"nm and frequency is\",round(f/10**15,2),\"X 10^15 Hz and energy is\",round(E,1),\"eV\"\n", "\n", "\n", "#Variable declarartion\n", "mc2 = 938.8 * 10 ** 6 #m*c^2 of hydrogen atom(eV)\n", "#Calculation\n", "\n", "p = E / c\n", "K = 0.5 * E**2 /mc2\n", "\n", "#results\n", "\n", "print \"The momentum of the recoiling hydrogen atom is \",round(p*c,1),\"eV/c and the energy is\",round(K/10**-8,2),\"X 10^-8 eV.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of the emitted photon is 121.54 nm and frequency is 2.47 X 10^15 Hz and energy is 10.2 eV\n", "The momentum of the recoiling hydrogen atom is 10.2 eV/c and the energy is 5.55 X 10^-8 eV.\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.8, page no. 136" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "\n", "R = 1.097 * 10**7 #Rydberg constant(m^-1) \n", "nf = 2.0 #energy state\n", "ni = 3.0 #energy state\n", "c = 3 * 10 ** 8 #speed of light (m/s)\n", "h = 4.136 * 10 ** -15 #Planck's constant (eV.s)\n", "\n", "#Calculation\n", "\n", "lamda = (R * ((1/nf**2) - (1/ni**2))) ** -1\n", "f = c / lamda\n", "E = h * f\n", "\n", "#Results\n", "\n", "print \"The longest-wavelength photon in the Balmer series is\",round(lamda/10**-9,2),\"nm and frequency is\",round(f/10**15,2),\"X 10^15 Hz and energy is\",round(E,2),\"eV\"\n", "\n", "\n", "#Variable declaration\n", "\n", "R = 1.097 * 10**7 #Rydberg constant(m^-1) \n", "nf = 2.0 #energy state\n", "c = 3 * 10 ** 8 #speed of light (m/s)\n", "h = 4.136 * 10 ** -15 #Planck's constant (eV.s)\n", "\n", "#Calculation\n", "\n", "lamda = (R * (1/nf**2)) ** -1\n", "\n", "#Results\n", "\n", "print \"The shortest-wavelength photon emitted in the Balmer series is\",round(lamda/10**-9,2),\"nm.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The longest-wavelength photon in the Balmer series is 656.34 nm and frequency is 0.46 X 10^15 Hz and energy is 1.89 eV\n", "The shortest-wavelength photon emitted in the Balmer series is 364.63 nm.\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.9, page no. 137" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "E = 10.2 #average thermal energy per atom(eV)\n", "kB =8.62 * 10**-5 #Boltzmann constant (eV/K)\n", "N2_by_N1 = 0.10 #N2/N1\n", "\n", "#Calculation\n", "\n", "T1 = E /((3.0/2.0)* kB)\n", "T2 = -E/(kB * math.log(N2_by_N1))\n", "\n", "#Results\n", "\n", "print \"The temperature is \",round(T1),\"K and by Boltzmann distribution the temperature is\",round(T2),\"K.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The temperature is 78886.0 K and by Boltzmann distribution the temperature is 51390.0 K.\n" ] } ], "prompt_number": 26 } ], "metadata": {} } ] }