{ "metadata": { "name": "", "signature": "sha256:8b9d9c8500ecb20deeeb6f065d1408d228b300a0b95f2800ee645e0184760d45" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13: Nuclear Structure " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.1, page no. 466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Variable Declaration\n", "\n", "NA = 6.02 * 10 ** 23 # Avogadro's number\n", "m = 0.012 # one mole of carbon (kg)\n", "mC = 12 # mass of one atom(1u)\n", " \n", "#Calculation\n", "\n", "ma = m/NA\n", "u = ma / mC\n", "\n", "#Results\n", "\n", "print \"The atomic mass unit is \",round(u/10**-27,2),\"X 10^-27 kg.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The atomic mass unit is 1.66 X 10^-27 kg.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.2, page no. 468" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable Declaration\n", "\n", "m = 1.67 * 10 ** -27 # mass of neutron(kg)\n", "r0 = 1.2 * 10 ** -15 # radius os the nucleus(m)\n", "\n", "#Calculation \n", "\n", "pn = 3* m /(4 * math.pi * r0**3)\n", "\n", "#Results\n", "\n", "print \"The nuclear density is\",round(pn/10**17,1),\"X 10^17 kg/m^3.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The nuclear density is 2.3 X 10^17 kg/m^3.\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.3, page no. 473" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "\n", "#Variable Declaration\n", "\n", "MH = 1.007825 #mass of hydrogen (u)\n", "mn = 1.008665 #mass of neutron (u)\n", "M2 = 2.014102 #mass of deuteron (u)\n", "\n", "#Calculation\n", "\n", "Eb = (MH + mn - M2) * 931.494\n", "\n", "#results\n", "\n", "print \"The binding energy of deuteron is\",round(Eb,3),\"MeV.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The binding energy of deuteron is 2.224 MeV.\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.4, page no. 482" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Variable declaration\n", "\n", "Thalf = 5730 #Half-life (yr)\n", "N = 1000 #No of carbon nuclei\n", "T = 22920 #(yr)\n", "\n", "#calculation\n", "n=N\n", "t = 0\n", "while(t!=T):\n", " n = n/2\n", " t = t + Thalf\n", "\n", "#result\n", "\n", "print \"The number of Carbon nuclei left after 22,920 yr is\",n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of Carbon nuclei left after 22,920 yr is 62\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.5, page no. 483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "Thalf = 1.6 * 10 ** 3 #Half-life (yr)\n", "s = 3.16 * 10 ** 7 #number of seconds in a year (s/yr)\n", "\n", "#Calculation\n", "\n", "lamda = 0.693 / (Thalf * s)\n", "\n", "#result\n", "\n", "print \"(a) The decay constant is\",round(lamda/10**-11,1),\"X 10^-11 s^-1.\"\n", "\n", "\n", "#Variable Declaration\n", "\n", "N0 = 3.0 * 10 ** 16 #number of radioactive nuclei at t=0\n", "Ci = 3.7 * 10 **10 \n", "\n", "#Calculation\n", "\n", "R0 = lamda * N0\n", "\n", "#results\n", "\n", "print \"(b) Its activity is\",round(R0/Ci/10**-6,1),\"X 10^-6 Ci.\"\n", "\n", "\n", "#Variable Declaration\n", "\n", "T = 2.0 * 10 ** 3 #(yr)\n", "\n", "#Calculation\n", "\n", "R = R0 * math.exp(-lamda*(T * s))\n", "\n", "#results\n", "\n", "print \"(c) The decay rate after 2.0 X 10^3 yr is\",round(R/10**5,1),\"X 10^5 decays/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The decay constant is 1.4 X 10^-11 s^-1.\n", "(b) Its activity is 11.1 X 10^-6 Ci.\n", "(c) The decay rate after 2.0 X 10^3 yr is 1.7 X 10^5 decays/s\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.6, page no. 483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable Declaration\n", "\n", "A = 6.02 * 10 ** 23 #avogadro's number\n", "m = 3.50 * 10 ** -6 # mass of carbon(g)\n", "ma = 11.0 #atomic mass of carbon (g)\n", "\n", "#Calculation\n", "\n", "N = m * A / ma\n", "\n", "#Result\n", "\n", "print \"(a) The number of nuclei samples at t=0 is\",round(N/10**17,2),\"X 10^17 nuclei.\"\n", "\n", "\n", "\n", "#Variable declaration\n", "\n", "Thalf = 20.4 * 60 #half-life (s)\n", "T = 8.00 #(h)\n", "\n", "#Calculation\n", "\n", "lamda = 0.693 / Thalf\n", "R0 = lamda * N\n", "R = R0 * math.exp(-lamda* T*60*60)\n", "\n", "#result\n", "\n", "print \"(b) The activity initially is\",round(R0/10**14,2),\"X 10^14 decay/s and after t=8.0h is\",round(R/10**6,2),\"X 10^6 decay/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The number of nuclei samples at t=0 is 1.92 X 10^17 nuclei.\n", "(b) The activity initially is 1.08 X 10^14 decay/s and after t=8.0h is 8.99 X 10^6 decay/s\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.7, page no. 484" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable Declaration\n", "\n", "Thalf = 8.04 # half-life (days)\n", "R0 = 5.0 #Activity at t=0 (mCi)\n", "R = 4.2 #Activity (mCi)\n", "\n", "#Calculation\n", "\n", "t = - (Thalf/0.693)* math.log(R/R0)\n", "\n", "#Result\n", "\n", "print \"The time elapsed is\",round(t,2),\"days.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The time elapsed is 2.02 days.\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.8, page no. 486" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "\n", "#Variable Declaration\n", "\n", "Mx = 226.025406 #atomic mass of 226Ra(u)\n", "My = 222.017574 #atomic mass of 222Rn(u)\n", "Ma = 4.002603 #atomic mass of 4He (u)\n", "\n", "#Calculation\n", "\n", "Q = (Mx - My - Ma) * 931.494\n", "\n", "#Result\n", "\n", "print \"Q value is\",round(Q,2),\"MeV.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Q value is 4.87 MeV.\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.9, page no. 487" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "#Variable declaration\n", "\n", "r0 = 7.25 * 10**-5 #Bohr radius for alpha particle(A')\n", "Z = 86 #daughter nucleus radon's atomic number\n", "A = 222 #radon's mass number\n", "ke2 = 14.40 #boltzmann constant X (charge of electron)^2 (eV.A')\n", "E = 5 #disintegration energy (MeV)\n", "\n", "#Calculation\n", "\n", "E0 = ke2 / (2.0*r0) * 10**-6 #Energy unit analogous to Rydberg (MeV)\n", "R = (1.2 * 10**-5) *(A)**(1.0/3.0) #radius of Radon nucleus(A')\n", "Te = math.exp(round(-4*math.pi*Z*math.sqrt(E0/E)+8*math.sqrt(Z*R/r0)))\n", "\n", "#result\n", "print \"The probability of escape of alpha particle is\",round(Te/10**-34,2),\"X 10^-34\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The probability of escape of alpha particle is 1.33 X 10^-34\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.11, page no. 490" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable Declaration\n", "\n", "Thalf = 5730 # half-life (yr)\n", "s = 3.16 * 10 ** 7 # (s/yr)\n", "A = 6.02 * 10 ** 23 # Avogadro's number\n", "mw = 12.0 # molar weight of carbon(g)\n", "m = 25.0 # mass of carbon(g) \n", "r = 1.3 * 10 ** -12 # ratio of 14C to 12C\n", "R = 250 # activity observed (decays/min)\n", "\n", "#Calculation\n", "\n", "lamda = 0.693 /(Thalf * s)\n", "N1 = A * m/mw\n", "N0 = r * N1\n", "R0 = N0 * lamda\n", "t = -(1/lamda)*math.log(R/(R0*60))\n", " \n", "#Result\n", "\n", "print \"The tree has been dead for\",round(round(t/10**11)*10**11/s/10**3,1),\"X 10^3 yr.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The tree has been dead for 3.2 X 10^3 yr.\n" ] } ], "prompt_number": 25 } ], "metadata": {} } ] }