{ "metadata": { "name": "Chapter13", "signature": "sha256:3612dc1ad0c2617d4c1e1da21ea7791334391562bfe93ddc9d0f98037d4fe15d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13:Nuclear Reaction and Application" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.1, Page 417" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "v=1*1.0*10**-6.0*10**2; p=7.9; m=p*v;Na=6.023*10**23 #given values and various constants in suitable units\n", "M=56.0;N=m*Na/M; #number of atoms\n", "i=3.0*10**-6;\n", "q=1.6*10**-19;\n", "\n", "#calculation\n", "Io=i/q; #intensity\n", "s=0.6*10**-24;S=1; #given values in suitable units\n", "R=N*s*Io/S; #rate of neutrons\n", "\n", "#result\n", "print\"The rate of neutrons emitted from the target in particles per second is %.1e\" %round(R,3);\n", "print\"Slight difference in answer due to approximation error\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate of neutrons emitted from the target in particles per second is 9.6e+07\n", "slight difference due to approximation error\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.2, Page 419" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "A=197.0; m=30*10**-3;phi=3.0*10**12; #given values and various constants taken in suitable units\n", "Ar=99.0*10**-24; Na=6.023*10**23\n", "\n", "#calculation\n", "R=(phi*Na*Ar*m/A); #rate or production of gold\n", "t=2.7*24*60 # time of decay\n", "Act=R*(0.693/t); #activity /sec\n", "ActCi=Act/(3.7*10**4); # in terms of curie(Ci)\n", "\n", "#result\n", "print\"The activity is found out to be %.1e\" %round(Act,3),\"/sec i.e \" ,round(ActCi,3),\"muCi\"\n", "print\"Slight difference in answer due to approximation error\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The activity is found out to be 4.9e+06 /sec i.e 131.229 muCi\n", "slight difference due to approximation error\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.3, Page 423" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "from math import exp\n", "v=1.5*1.5*2.5*(10**-6)*10**2; #volume in cm3\n", "p=8.9; #density in g/cm3\n", "m=p*v;Na=6.023*10**23 #mass and Avagadro's number\n", "M=58.9; #Given values\n", "\n", "#calculation\n", "N=m*Na/M;\n", "i=12*10**-6; #thickness of beam\n", "q=1.6*10**-19;\n", "Io=i/(2*q); #intensity\n", "s=0.64*10**-24; #Given values\n", "S=1.5*1.5;\n", "R=N*s*Io/S; #rate of production of 61Cu\n", "\n", "#result\n", "print \"The rate of neutrons emitted from the target in particles/second is %.1e\" %round(R,3);\n", "\n", "#part b\n", "act=R*(1-(exp((0.693)*(-2/3.41)))); #activity\n", "\n", "#result\n", "print\"The activity after 2.0h in /sec is %.1e\" %round(act,3),\"=4.9mCi\";\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rate of neutrons emitted from the target in particles/second is 5.5e+08\n", "The activity after 2.0h in /sec is 1.8e+08 =4.9mCi\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.4, Page 425" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "m2H=2.014102; #mass of various particles\n", "mn=1.008665;m63Cu=62.929599;\n", "m64Zn=63.929145;c2=931.5; #c^2=931.5 MeV\n", "Q=(m2H+m63Cu-mn-m64Zn)*c2; #Q of the reaction\n", "\n", "#result\n", "print\"The value of Q is in MeV\",round(Q,3);\n", "\n", "\n", "#part b\n", "Kx=12.00;Ky=16.85;\n", "Ky=Q+Kx-Ky #kinetic energy of 64Zn\n", "\n", "#result\n", "print\"The value of Ky was found out to be in MeV\",round(Ky,3);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Q is in MeV 5.487\n", "The value of Ky was found out to be in MeV 0.637\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.5, Page 425" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "mp=1.007825;m3H=3.016049; #mass of the particle\n", "m2H=2.014102;c2=931.5; #constant\n", "Q=(mp+m3H-(2*m2H))*c2; #Q of the reaction\n", "\n", "#result\n", "print\"The value of q was found out to be in MeV\",round(Q,3);\n", "\n", "#partb\n", "Kth1= -Q*(1+(mp/m3H)); #threshold energy of kinetic energy\n", "Kth2=-Q*(1+(m3H/mp)); #threshold kinetic energy in case2\n", "\n", "#result\n", "print\"The threshold kinetic energy in case-1 in MeV\",round(Kth1,3);\n", "print\"The threshold kinetic energy in case-2 in MeV\",round(Kth2,3);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of q was found out to be in MeV -4.033\n", "The threshold kinetic energy in case-1 in MeV 5.381\n", "The threshold kinetic energy in case-2 in MeV 16.104\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }