{
 "metadata": {
  "name": "MP-11"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": "Solid State Physics"
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 11.1 Page 346"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nc=769.0*10**3; Na=6.023*10**23; JeV=1.6*10**-19; #various constants and given values\n\n#calculation\nBe=c/(Na*JeV);        #Binding energy of an ion pair in the lattice\n\n#result\nprint\"The experimental value was found out to be in eV.\",round(Be,5);\n\n#partb\nn=9.0;a=1.7476; R=0.281; k= 1.44;     #Given values and consstants\nBc=k*a*(1-(1/n))/R;                  #ionic binding energy eperimentally\n\n#result\nprint\"The calculated value of the binding energy in eV.is\",round(Bc,4);\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The experimental value was found out to be in eV. 7.97983\nThe calculated value of the binding energy in eV.is 7.9606\n"
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 11.2 Page 350"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\na=3.61;# amount of energy required to remove an electron from Cl- ion\nb=-5.14 #amount of energy returned when an electron is added to Na+ ion\\\nc=7.98 #binding energy of NaCl atom\n\n#calculation\nE=a+b+c  #suom of all the energies\nprint\"The net energy to be supplied in eV is\",round(E,3);",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The net energy to be supplied in eV is 6.45\n"
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": "Example 11.3 Page 355"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": "#initiation of variable\nfrom math import exp,sqrt\nNa=6.023*10**23; p=8.96*10**3; M=63.5*10**-3;   #Na=avagadro's number,p=density,M=molar mass\n\n#calculation\nn= p*Na/M;                                   #density of charge carriers\n\n#result'\nprint\"The density of charge carriers in copper in atoms/m3 is %.1e\" %round(n,3);\n\ns=5.88*10**7;m=9.11*10**-31;e=1.6*10**-19;    #charge & mass of an electron,resistance per unit length\nt= s*m/(n*e**2);                            #average time between collisions\n\n#result\nprint \"The average time between collisions of conducting electrons in sec.is %.1e\" %t\n\n#partb\nEf=7.03*1.6*10**-19;           #converting given enrgy to J\n\n#calculation\nVf=sqrt(2*Ef/m);               #fermi velocity\nl=Vf*t;                      #mean free path\n\n#result\nprint \"The average mean free path is\",l,\"m =\",round(l*10**9,3),\" nm\"\n",
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": "The density of charge carriers in copper in atoms/m3 is 8.5e+28\nThe average time between collisions of conducting electrons in sec.is 2.5e-14\nThe average mean free path is 3.8690296096e-08 m = 38.69  nm\n"
      }
     ],
     "prompt_number": 1
    }
   ],
   "metadata": {}
  }
 ]
}