{ "metadata": { "name": "Chapter11" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11:Solid State Physics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.1, Page 346" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "c=769.0*10**3; Na=6.023*10**23; JeV=1.6*10**-19; #various constants and given values\n", "\n", "#calculation\n", "Be=c/(Na*JeV); #Binding energy of an ion pair in the lattice\n", "\n", "#result\n", "print\"The experimental value was found out to be in eV.\",round(Be,5);\n", "\n", "#partb\n", "n=9.0;a=1.7476; R=0.281; k= 1.44; #Given values and consstants\n", "Bc=k*a*(1-(1/n))/R; #ionic binding energy experimentally\n", "\n", "#result\n", "print\"The calculated value of the binding energy in eV.is\",round(Bc,4);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The experimental value was found out to be in eV. 7.97983\n", "The calculated value of the binding energy in eV.is 7.9606\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.2, Page 350" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "a=3.61;# amount of energy required to remove an electron from Cl- ion\n", "b=-5.14 #amount of energy returned when an electron is added to Na+ ion\\\n", "c=7.98 #binding energy of NaCl atom\n", "\n", "#calculation\n", "E=a+b+c #sum of all the energies\n", "print\"The net energy to be supplied in eV is\",round(E,3);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The net energy to be supplied in eV is 6.45\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.3, Page 355" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "from math import exp,sqrt\n", "Na=6.023*10**23; p=8.96*10**3; M=63.5*10**-3; #Na=avagadro's number,p=density,M=molar mass\n", "\n", "#calculation\n", "n= p*Na/M; #density of charge carriers\n", "\n", "#result'\n", "print\"The density of charge carriers in copper in atoms/m3 is %.1e\" %round(n,3);\n", "\n", "s=5.88*10**7;m=9.11*10**-31;e=1.6*10**-19; #charge & mass of an electron,resistance per unit length\n", "t= s*m/(n*e**2); #average time between collisions\n", "\n", "#result\n", "print \"The average time between collisions of conducting electrons in sec.is %.1e\" %t\n", "\n", "#partb\n", "Ef=7.03*1.6*10**-19; #converting given enrgy to J\n", "\n", "#calculation\n", "Vf=sqrt(2*Ef/m); #fermi velocity\n", "l=Vf*t; #mean free path\n", "\n", "#result\n", "print \"The average mean free path is\",l,\"m =\",round(l*10**9,3),\" nm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The density of charge carriers in copper in atoms/m3 is 8.5e+28\n", "The average time between collisions of conducting electrons in sec.is 2.5e-14\n", "The average mean free path is 3.8690296096e-08 m = 38.69 nm\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }