{ "metadata": { "name": "", "signature": "sha256:1d13a558dd2cc62e2c7ada350fc7a07d9283efcbc790578d0711fd6c96f50df0" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10: Statistical Physics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1, page no. 340" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable declaration\n", "\n", "n1 = 1 #Ground state\n", "n2 = 2 #First excited state\n", "n3 = 3 #second excited state\n", "T = 300 #room temperature(K)\n", "kb = 8.617 * 10 **-5 #Boltzmann constant(eV/K)\n", "\n", "#Calculation\n", "\n", "E1 = -13.6 / n1 ** 2\n", "g1 = 2 * n1 ** 2\n", "E2 = -13.6 / n2 ** 2\n", "g2 = 2 * n2 ** 2\n", "E3 = -13.6 / n3 ** 2\n", "g3 = 2 * n3 ** 2\n", "N3 = g3 * math.exp(-E3/(kb*T))\n", "N2 = g2 * math.exp(-E2/(kb*T))\n", "N1 = g1 * math.exp(-E1/(kb*T))\n", "ratio1 = N2 / N1\n", "ratio2 = N3 / N1\n", "\n", "#results\n", "\n", "print \"(a) We can see that n2/n1=\",round(ratio1),\"and n3/n1=\",round(ratio2),\"essentially all atoms are in ground state.\"\n", "\n", "\n", "#Variable Declaration\n", "\n", "T = 20000 #Temperature(K)\n", "\n", "#Calculation\n", "\n", "N3 = g3 * math.exp(-E3/(kb*T))\n", "N2 = g2 * math.exp(-E2/(kb*T))\n", "N1 = g1 * math.exp(-E1/(kb*T))\n", "ratio1 = N2 / N1\n", "ratio2 = N3 / N1\n", "\n", "#result\n", "\n", "print \"(b) n2/n1=\",round(ratio1,5),\"and n3/n1=\",round(ratio2,5)\n", "\n", "\n", "ratio3 = N3 / N2\n", "\n", "print \"(c) S(3->2)/S(2->1)=\",round(ratio3,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) We can see that n2/n1= 0.0 and n3/n1= 0.0 essentially all atoms are in ground state.\n", "(b) n2/n1= 0.01076 and n3/n1= 0.00809\n", "(c) S(3->2)/S(2->1)= 0.75\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2, page no. 345" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable Declaration\n", "\n", "m = 3.34 * 10 ** -27 #mass of hydrogen(kg)\n", "kbT = 3.77 * 10 ** -21 #kb * T (eV)\n", "N = 6.02 * 10 ** 23 #avogadro's number\n", "V = 22.4 * 10 ** -3 #Volume of H2 gas (m^3)\n", "h = 1.055 * 10 ** -34 #Planck's constant (J.s)\n", "\n", "#Calculation\n", "\n", "r = (N/V)* h ** 3 / (8 * (m * kbT)**1.5)\n", "\n", "#result\n", "\n", "print \"(a) (N/V)h^3/(8*(mkbT)^3/2)=\",round(r/10**-8,2),\"X10^-8 is much less than 1, we conclude that even hydrogen is described by Maxwell-Boltzmann statistics.\"\n", "\n", "\n", "\n", "#Variable declaration\n", "\n", "d = 10.5 #density of silver (g/cm^3)\n", "mw = 107.9 #Molar weight of silver (g/mol)\n", "me = 9.109*10**-31 #mass of electron(kg)\n", "kbT = 4.14 * 10 ** -21 #kb*T (J)\n", "\n", "#Calculation\n", "\n", "Ns = (d/mw)* N * 10 ** 6\n", "r = (Ns)* h ** 3 / (8 * (me * kbT)**1.5)\n", "\n", "#result\n", "\n", "print \"(b) (N/V)h^3/(8*(mkbT)^3/2)=\",round(r/8,2),\"is greater than 1, we conclude that the Maxwell-Boltzmann statistics does not hold for electrons of silver.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) (N/V)h^3/(8*(mkbT)^3/2)= 8.83 X10^-8 is much less than 1, we conclude that even hydrogen is described by Maxwell-Boltzmann statistics.\n", "(b) (N/V)h^3/(8*(mkbT)^3/2)= 4.64 is greater than 1, we conclude that the Maxwell-Boltzmann statistics does not hold for electrons of silver.\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3, page no. 352" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "\n", "import math\n", "\n", "#Variable Declaration\n", "\n", "kB = 8.62 * 10 ** -5 #Boltzmann constant(eV/K)\n", "T1 = 3000 #Cavity walls temperature(K)\n", "T2 = 3.00 #Cavity walls temperature(K)\n", "hc = 1.24 * 10 ** -4 #product of planck's constant and speed of light (eV.cm)\n", "integration = 2.40 #value of integral(z^2/e^z-1,0,+inf)\n", "\n", "#Calculation\n", "\n", "NbyV_at_3000 = 8* math.pi * (kB * T1/hc)**3 * integration\n", "NbyV_at_3 = 8* math.pi * (kB * T2/hc)**3 * integration\n", "\n", "#result\n", "\n", "print \"N/V at 3000K is\",round(NbyV_at_3000/10**11,2),\"X 10^11 photons/cm^3. Likewise N/V at 3.00 K is\",round(NbyV_at_3/10**2,2),\"X 10^2 photons/cm^3\"\n", "print \"Therefore the photon density decreases by a factor of\",round(NbyV_at_3000/NbyV_at_3/10**9),\" X 10^9 when the temperature drops from 3000K to 3.00K\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "N/V at 3000K is 5.47 X 10^11 photons/cm^3. Likewise N/V at 3.00 K is 5.47 X 10^2 photons/cm^3\n", "Therefore the photon density decreases by a factor of 1.0 X 10^9 when the temperature drops from 3000K to 3.00K\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }