{ "metadata": { "name": "Chapter10", "signature": "sha256:e4e2027717708d18dd95ce338ad24e83f0d7666653044656429dafb0b39af784" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10:Statistical Physics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2 Page 307" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "from math import sqrt\n", "#The solution is purely theoretical and involves a lot of approximations.\n", "print\"The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\";\n", "T=6000.0; #temperature for sun\n", "delf=7.14*10**-7*sqrt(T);#change in frequency\n", "\n", "#result\n", "print\"The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is\",delf,\" times the frequency of the light.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of shift in frequency was found out to be delf=7.14*fo*10^-7*sqrt(T) for a star composing of hydrogen atoms at a temperature T.\n", "The value of frequency shift for sun(at 6000 deg. temperature) comprsing of hydrogen atoms is 5.53062021838e-05 times the frequency of the light.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3 Page 309" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "from math import sqrt,pi, exp, log\n", "kT=0.0252;E=10.2 # at room temperature, kT=0.0252 standard value and given value of E\n", "\n", "#calculation\n", "n2=2;n1=1; g2=2*(n2**2);g1=2*(n1**2); #values for ground and excited states\n", "t=(g2/g1)*exp(-E/kT); #fraction of atoms\n", "\n", "#result\n", "print\"The number of hydrogen atoms required is %.1e\" %(1.0/t),\" which weighs %.0e\" %((1/t)*(1.67*10**-27)),\"Kg\"\n", "\n", "#partb\n", "t=0.1/0.9;k=8.65*10**-5 #fracion of atoms in case-2 is given\n", "T=-E/(log(t/(g2/g1))*k); #temperature\n", "\n", "#result\n", "print\"The value of temperature at which 1/10 atoms are in excited state in K is %.1e\" %round(T,3);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of hydrogen atoms required is 1.5e+175 which weighs 3e+148 Kg\n", "The value of temperature at which 1/10 atoms are in excited state in K is 3.3e+04\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4 Page 311" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "from math import log\n", "#theoretical part a\n", "print'The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\\nThe ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)';\n", "#partb\n", "uB=5.79*10**-4; #for a typical atom\n", "t=1.1;k=8.65*10**-5; #ratio and constant k\n", "\n", "#calculation\n", "T=2*uB/(log(t)*k); #temperature\n", "\n", "#result\n", "print\"The value of temperature ar which the given ratio exists in K is\",round(T,3);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy of interaction with magnetic field is given by uB and the degeneracy of the states are +-1/2 which are identical.\n", "The ratio is therefore pE2/pE1 which gives e^(-2*u*B/k*T)\n", "The value of temperature ar which the given ratio exists in K is 140.46\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5 Page 313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#initiation of variable\n", "from math import pi\n", "p=0.971; A=6.023*10**23; m=23.0; # various given values and constants\n", "\n", "#calculation\n", "c= (p*A/m)*10**6; # atoms per unit volume\n", "hc=1240.0; mc2=0.511*10**6; # hc=1240 eV.nm\n", "E= ((hc**2)/(2*mc2))*(((3/(8*pi))*c)**(2.0/3)); #value of fermi energy\n", "\n", "#result\n", "print\"The fermi energy for sodium is\",round(E*10**-18,4),\"eV\";#multiply by 10^-18 to convert metres^2 term to nm^2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The fermi energy for sodium is 3.1539 eV\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }