{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1 ELECTROMAGNETIC THEORY" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 1.1,page no.17" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "phase velocity in meter per second= 6.54e+07 \n", "wavelength in meter= 2.18e-02 \n", "wave impedence in ohm= 2.47e+02 \n" ] } ], "source": [ "# program to calculate wavelength , phase velocity and wave impedence .\n", "from math import pi,sqrt\n", "\n", "f=3*10**9;\n", "mur =3;\n", "muo =4*pi*10**-7;\n", "eipsilao =8.854*10**-12;\n", "eipsilar =7;\n", "mue=muo*mur;\n", "eipsila=eipsilao*eipsilar;\n", "Vp=sqrt(1/(mue*eipsila));\n", "lamda=Vp/f;\n", "eta=sqrt(mue/eipsila);\n", "#Result\n", "print\"phase velocity in meter per second= %.2e \"%Vp;\n", "# phase velocity .\n", "print\"wavelength in meter= %.2e \"%lamda # wavelength.\n", "print\"wave impedence in ohm= %.2e \"%eta # wave impedence ." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example:−1.2 page no.−20" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "skin depth of aluminium in meter=8.15e-07 \n", "skin depth of copper in meter= 6.60e-07\n", "skin depth of gold in meter= 7.86e-07\n", "skin depth of silver in meter= 6.41e-07\n" ] } ], "source": [ "# progarm to find out skin depth of aluminium, copper , gold and silver at frequency 10GHZ.\n", "f=10*10**9;\n", "muo=4*pi*10**-7; # permeability in free space.\n", "omega=2*pi*f;\n", "sigma_aluminium =3.816*10**7;\n", "sigma_copper =5.813*10**7;\n", "sigma_gold =4.098*10**7;\n", "sigma_silver =6.173*10**7;\n", "delta1=sqrt(2/(omega*muo*sigma_aluminium));\n", "delta2=sqrt(2/(omega*muo*sigma_copper));\n", "delta3=sqrt(2/(omega*muo*sigma_gold));\n", "delta4=sqrt(2/(omega*muo*sigma_silver));\n", "#result\n", "print\"skin depth of aluminium in meter=%.2e \"%delta1; # skin depth of aluminium\n", "print\"skin depth of copper in meter= %.2e\"%delta2; # skin depth of copper .\n", "print\"skin depth of gold in meter= %.2e\"%delta3; #skin depth of gold .\n", "print\"skin depth of silver in meter= %.2e\"%delta4; # skin depth of silver ." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example:−1.3 page no.−24" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "for z<0, E1= A*N*x*exp(I*ko*z)\n", "for z<0, H1= -A*N*y*exp(I*ko*z)\n", "for z>0, E2= B*N*x*exp(-I*ko*z)\n", "for z>0, H2= B*N*y*exp(-I*ko*z)\n", "Matrix([[-Jo/2], [-Jo/2]])\n" ] } ], "source": [ "#program to find the resulting fields by assuming plane waves on either side of the current sheet and enforcing the boundary conditions.\n", "from sympy import symbols,Matrix,exp,I\n", "\n", "E,x,E1,E2,H1,H2,z,Jo,A,B,N,n,ko,y,l,m = symbols('E,x,E1,E2,H1,H2,z,Jo,A,B,N,n,ko,y,l,m');\n", "E1=A*N*exp(I*ko*z)*x; # x component of elec tricfield (region z<0).\n", "H1=A*N*exp(I*ko*z)*(-y); # y component of magnetic field (region z<0).\n", "E2=B*N*exp(-I*ko*z)*x;# x component of electric field (region z>0).\n", "H2=B*N*exp(-I*ko*z)*y; # y component of electric field (region z>0).\n", "print \"for z<0, E1=\",E1\n", "print \"for z<0, H1=\",H1\n", "print \"for z>0, E2=\",E2\n", "print \"for z>0, H2=\",H2\n", "#from boundary conditions\n", "c=Matrix([[-1,-1],[1,-1]]);\n", "d=Matrix([[A],[B]]);\n", "d=c.inv()*Matrix([[Jo],[0]]);\n", "print d;\n", "#result\n", "# A=−Jo/2; B=−Jo/2." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example:−1.4 page no.−38." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "skin depth in meter= 2.087e-06\n", "propagation comstant = 479049.101381194 + 479049.101381194*I\n", "intrinsic impedence in ohm= 0.00824099606711155 + 0.00824099606711155*I\n", "reflection coefficient= (-376.991759003933 + 0.00824099606711155*I)/(377.008240996067 + 0.00824099606711155*I)\n", "transmission coefficient= (0.0164819921342231 + 0.0164819921342231*I)/(377.008240996067 + 0.00824099606711155*I)\n" ] } ], "source": [ "# program to compute propagation constan , impedence , skin depth , reflection and transmission coefficient\n", "from sympy import I\n", "from numpy import pi,sqrt\n", "\n", "f=1*10**9;\n", "omega=2*pi*f;\n", "sigma=5.813*10**7; # for copper .\n", "mue=4*pi*10**-7; # permeability in free space.\n", "delta=sqrt(2/(mue*sigma*omega)); # skin depth .\n", "gama=((1+I)/delta); # propagation constant .\n", "eta=gama/sigma; # impedence\n", "etao=377; # intrinsic impedence in free space .\n", "tao=((eta-etao)/(eta+etao)); # reflection coefficient .\n", "t=(2*eta)/(eta+etao); # transmission coefficient\n", "# result\n", "print \"skin depth in meter= %.3e\"%delta\n", "print \"propagation comstant =\",gama\n", "print \"intrinsic impedence in ohm=\",eta\n", "print \"reflection coefficient=\",tao\n", "print \"transmission coefficient= \",t" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example:−1.5 page no.−42." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The wave impendaces are 377 ohm , 236 ohm\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm8XePVx78/IUHMgppjCqJmYmjpVS2JeSY1NCjKiw6U\noprgRdXYljdCCa0SFUUQY+KigopEYkhINCGTIQkJIZHkrvePZ1859+Sce/c59+yzz7C+n8/53LP3\nfvZ61t7n2XftZ1hrycxwHMdxnGaWSVsBx3Ecp7Jww+A4juO0wA2D4ziO0wI3DI7jOE4L3DA4juM4\nLXDD4DiO47TADUNCSGqQNCVje7KkfWOc11VSk6SS/zaR3E2LPHcjSV9IUol12kvS+FLKdJIlsx1J\n6i/pd+2Ul1ibL0KXfpL+3o7z230/8sgdKunEUsvNx7LlqsjBok9VYmYfAiu3V46kJmBzM/tvJPdF\nYKv2ynXSwczOTFuHEtOuZ7QU90NSP2AzM/vWEJjZAe2VWwipW+hqRBFp61EuJJX6BaJu7l3SJPDb\nVBWV1DYrocdTKmrmQuIQDef8VtLbkmZLulNSp+jYapIek/RJdOxRSetnnNso6X8lvQTMAzaVdLKk\ndyTNlfS+pNNj6qFIj4mSZkq6X9Lq7b2G6PhpkiZImiXpEUnr5pFzoKTRkuZI+lBS34xjzV37UyR9\nADwraePm7r6kPaJhpebPfEmTonN7SHpZ0meSpkv6i6TlomMvRFWMic47OseQ29bRvf5M0luSDs44\ndpekW6Lfaa6kV4odGkubGL/jQZLeiO7DS5K2zTr3AkljgS8kdSiBvPMkjZH0uaRBWef+Jvotp0o6\nJes67pJ0Rcb2oVE9c6L2vV9GHftmlMs7ZNPacxW1l6nR9c8A7shxfp/oGv8SXc84ST/MOL6epCHR\nMzJB0s9a+Z0ekDQjkvO8pO5Z195fYZjnS2CfzPuh8D8k8zlZLOmk6NifoudujqSRkr4f7e8JXAQc\nG50zOtrfKOnU6Lsk/S66px9LulvSKtGx5mf3JEkfSPpU0sX5ri8vZlY3H2AyMBZYH1gd+DdwRXRs\nDeBwYHlgJeCfwEMZ5zZG529NMKjLAgcAm0TH9yYYjB2j7QZgSsb5k4AfRt9/AYwA1gOWA24F7o2O\ndQWagGWKuIYfAp8COwAdgT8Dz2ec2wRsGn3/AbBN9H1b4CPg0Cwd7gJWADrl0yu6D43AldH2TkCP\n6B5tDLwD/CKXDtn3KboXE4HfRnL3AeYC3aLjdwEzgV2ADsA9wH1pt6sE2uKOwMfAroQ32JOi9rNc\nxrmjonM7lUDeJOAV4DvRue8AZ0THekZtozuwInBvVjsaCFwefe8BfA7sG22vB2yZ3f6j7b7A33O1\nedp+rhYCV0ftZfkc97ZPVOYXUTs5JtJrtej4C8DNhGdke+ATYJ/oWL9mvTJkdY7quhEYnXHsrkju\nHtF2p8z7kaVTL2AqsH60fXx0r5cBfg3MADpm3Ju/ZZ3/HHBK9P0UYEJ03zoDDzaXz7iXAyJ9tgPm\nA1sV1D7TfkDK/DBOAk7P+rEm5im7AzA764fp14b8h4BzMxpwPsPwTtZDsi7wTdRIWjwkhVwD4e3p\nDxnHOkdyN4q2W/xTzpJ7E3BDVuPqmnE8p15Af2BIK/fkl8C/MrZbMwx7ATOyzr8X6Bt9vwu4Leva\nx6XdrkrdFqN7enlW+fHAXhnn9imxvJ9kHLsG6B99vxO4KuPYFuQ3DAOA61u53sw23488hiHGc7WA\n6J9onvJ9gGlZ+14FTgA2BBYBnTOOXQUMzNYrh9zVIj1XzmiPd2WVGUhkkDP2dSMY5j1b0Xk2sG0+\nHWhpGIYBP8+Sn/3/Y72saz+2kPZZV0NJEVMyvn9IeKtB0oqSBkTdsznA88CqUou5hMxzkdQrGs6Y\nJekzwpvOmjF06Ao8FHXrPyMYikXAOu25BoKB+aD5gJnNA2YR3iJbIGk3Sc8pDJ19DpyRQ/cp2edl\nyTiD8Eb3k4x93RSGemZE9/HKHHLzsV6OOj9gyfUZ4QFr5mtC765ayfc7bgyc19w+ojayQcbx7HNL\nIe+jjO9fE14qILSpbLn52AB4v5XjsYjxXH1qZt+0IWZa1vYHhGtZl/DCNy/j2IfkfkY6SPpDNCQ2\nh2DcALpEf422n5FVgUeAS8xsRMb+86Phss+ja1w1Q25btHjOI/2XpeX/j8zf8yuW/J6xqEfDsFHW\n9+YGdB7B8vYws1UJQy2i5WSUNX+JxmAfBP4IrG1mqwNDs8rn40Ogp5mtnvFZ0cxmtPMaphOMTrOO\nnQkPVPZDAuFN/GFgAzNbjTCcld0ebKmzlsjeC7icMPz0Zcah/gRDt3l0Hy/JITcf04ENs4zxxnn0\nrwXy/Y4fEobmMtvHSmZ2f0b5XL9Ne+TlY0YOufmYAmye59g8Wv5z+k6uQjGfq7ztMoPsf/QbE9rX\ndGANSZkvFBsRhnmy+QlwCGFobFVgk2Y1Y9TfPBl9LzDMzP6asX8v4DfA0Wa2WnSNczLktnV9LZ7z\nSP9FtHxpahf1ZhgEnCVpfUlrEP5pNT8cKxHelOZEx/rmOb+ZjtFnJtAkqRewX0w9bgWukrQRgKS1\nJB1Sgmu4DzhZ0vbRA3YV8IqFpabZrAR8ZmbfSOpBeAjiPHBI2pAwB3OimU3MIfcL4CtJWwHZy/c+\nBjbLI/pVwtvNBZKWk9QAHAQMyrj2WqG13/F24OcKE/mS1FlhsUBrvaMk5EH4nfsoLApYkaWfi8yX\npzsI7e+HCosU1pe0ZXTsDeA4SctK2gU4ktztrT3PVSZrSzo3akdHE5ZEDzWzqYT5vasldZK0HWHM\n/p4cMlYiDFvNjl6yrspx7dlk7ruSMC/zy6wyKxP+kc+U1FHS74FVMo5/BHTNekHK5D7gV9FE80qR\nXoPMrClP+Xy65qXeDIMRLPjThC7vBOB/o2M3ESZaZxIazhMs3XC/3TazL4BzCQ/ObKA3ocuYs3wW\nfwKGAE9Lmgu8TJi4a+u8Vq/BzIYBlxLeuKYT3nCOyyP3LODyqP5LWfJPpDUdmvftC6wNPKglKy7e\njI6dTzAyc4HbCP/UM2X1A+6OhjSOIsO/IxoeOJgwPv4pYYLwRDN7L6P+vL9JldHa7/g6cBrh+mdH\nx06i+HZRqLzM3+RJwrMxHHiPML5tecq+BpxMmKT9nLAoobmHcSnhheAzQhv4R4462/tcZfIqYT7k\nU+AK4Egz+yw61pvwxj0d+BfwezMbnn09wN8IQzbTgLcIz2nOa8+z7zhgN+CzjOekN/Bk9HmPsGjg\na1oO0T0Q/Z0laWSOa7sT+DthEv2/hJepc7J0yKag50TR5EQiSLoTOBD4xMy2zVPmz4R/BF8RJtRG\nJ6jPJODUjEZQddTCNVQ7pWjXpf4dvV0sQVIfwr3YK21dqpWkewwDCcvdciLpAMJY9BbA6YTxacep\ndLxdOzVNoobBQriDz1opcghwd1T2VWA1SXFX5jhOKni7rnhyDfE4BZC2O/36tFzuNZWw5K1ks+uZ\nmNkmbZeqbGrhGuqANtt1qX9HbxdLMLO7iQyzUxyVMPmcPVvult6pBbxdO1VL2j2GaQRPxGY2IMea\ndUn+UDmJYmalXAobq12Dt20neYpp22n3GIYQls0haXfgczPLOYxUiDt3a5++ffu6LJfV4pNmu/a2\n7bKSlFUsifYYJN1H8CDuohBBsy8hGBVmNsDMhko6QNJEgmfkyUnq4zilwNu1U+skahjMrHeMMmcn\nqYPjlBpv106tk/ZQUtlpaGhwWS6rJqnU++uy0pNVLIl6PpcKSVYNejrViSSstJPPhdTtbdtpN3Pn\nwoorwrJZY0DFtu266zE4juPUGpddBn/8Y+nkuWFwHMepYszgkUegV6/SyXTD4DiOU8WMHw8LFsAO\nO5ROphsGx3GcKmbIEDjkEMibvaEI3DA4juNUMY8+GgxDKfFVSU7d46uSnGrl009h883hk0+gU6el\nj/uqJMdxnDrj8cfhxz/ObRTagxsGx3GcKiWJYSRww+DUEXPmhPXejlMLzJ8Pzz4LBxxQetluGJy6\n4d13wwoOx6kFnnsOttsOunQpvWw3DE7dMGECbLFF2lo4TmloXqaaBGkn6nGcsuGGwakVzML8wrBh\nycj3HoNTN7hhcGqF0aND0Lwtt0xGvhsGp2547z03DE5tkOQwErhhcOoEs9L2GCT1lDRe0gRJF+Y4\nvrqkhySNkfSqpG1KU7PjuGFwnJIwc2aIJbPmmu2XJakDcDPQE+gO9Ja0dVaxi4FRZrY9If/zn9pf\ns+PA1Knw4Yew557J1eGGwakLmnsLJQo01gOYaGaTzWwhMAg4NKvM1sBzAGb2LtBV0lolqd2pax5+\nGA48cOmkPKXEDYNTF5R44nl9YErG9tRoXyZjgCMAJPUANgY2KJkGTt0yeDAceWSydfhyVacuKLFh\niBP17g/AnySNBt4ERgOLcxXs16/ft98bGhoqIuevU5l88gm88Qbst1/u442NjTQ2Nra7Ho+u6tQF\nxx4bJuuOP37pY4VGoJS0O9DPzHpG2xcBTWZ2TSvnTAK2NbMvs/Z723Zic9ttMHw4DBoUr7xHV3Wc\nVihxj2EksIWkrpI6AscCLYJtSFo1Ooak04Dns42C4xTKgw8mP4wE3mNw6gAzWGWVsJJj9dWXPl7M\nW5WkXsBNQAfgDjO7WtIZoT4bIGkP4C7CsNNbwKlmNieHHG/bTixmz4ZNNoFp02ClleKdU2yPwQ2D\nU/N89BF897thyWouPFGPUw3cdRc88gg89FD8c3woyXHy4KEwnFrgwQfhqKPKU5cbBqfmccPgVDtz\n58Lzz8NBB5WnPjcMTs0zYQJ065a2Fo5TPI8/DnvtBauuWp763DA4NY/3GJxqp1yrkZpxw+DUPG4Y\nnGpm3jx45hk4NDvoSoK4YXBqGjOYONENg1O9PPkk7LpraQJAxsUNg1PTTJ8OK68cPo5TjZR7GAnc\nMDg1jg8jOdXM/PnwxBNw+OHlrdcNg1PTuGFwqpmhQ2GHHeA73ylvvW4YnJrGDYNTzdx3H/TuXf56\n3TA4NY0bBqdamTsXnn66/PMLkLBhiJEXt4ukJyW9IektSX2S1MepP9wwONXKkCHBqa2cq5GaScww\nxMyLezYw2sx2ABqA6yV58iCnJDQ1wX//C5tvnrYmjlM4aQ0jQbI9hjh5cWcAq0TfVwFmmdmiBHVy\n6oipU0OY7c6d09bEcQpj1iz497/L69SWSZJv57ny4u6WVeZ2YLik6cDKwDEJ6uPUGT6M5FQrgwdD\nz57x8y6UmiQNQ5wg8xcDb5hZg6TNgGckbW9mX2QX9Ly4TqHkMwylyovrOElx333wy1+mV39iiXri\n5MWVNBS40sxeiraHARea2cgsWZ7MxCmYX/86rP++4ILWyxWZwa0nSzK4/TU737OkLsA9wHcIL2DX\nmdldOeR423ZaMG0abLstzJgBnTq1T1aiiXokbS2pl6T9JW0VU3abeXGB8cCPojrWAbYE/htTvuO0\nSlJDSb6wwkmS+++Hww5rv1FoD3kbqqRNgF8BBwDTgOmAgHUlbQA8BtxoZpNznW9miySdDTzFkry4\n4zLz4gJXAQMljSEYqQvMbHapLs6pbxKcY/h2YQWApOaFFeMyyswAtou++8IKJzb33QdXXZWuDnmH\nkiT9kzA53BitKso8thywD/AzM0t8wti7206hfPNNSGry+edtv3kV2t2WdBSwv5mdFm2fAOxmZudk\nlFkGGA50I1pYYWZP5JDlbdv5lgkTgu/C1KmwbAn6l8UOJeWtuvkfvqRcj9UyZvY08HShFTpOOXjv\nPdh448S6476wwkmEQYPg6KOLNwqlWljR5uSzpFFmtlNb+5LE36qcQhk0CB54IIQsbosiegy+sMIp\nOWbQvTvccQfsuWdpZJa8xyBpXWA9YEVJOxHmF4wwXrpisYo6Tjl4+2347ncTE//twgrC3NuxQLaP\navPCipd8YYUTh//8BxYtgj32SFuT1v0Y9gP6EBzVrs/Y/wWhm+w4Fcvbb8NxxyUj2xdWOElw993w\n05+CCn6/Lz1xhpKOMrPBZdInnw7e3XYKols3eOgh2GabtssW290uBd62HQgJeTbYAF5/PcyNlYqS\nDyVl8Jik44GuhLcjAWZmlxdameOUg/nzYcoUD4fhVA+PPgrbb19ao9Ae4hiGR4DPgdeB+cmq4zjt\nZ/x42Gwz6NgxbU0cJx7Nw0iVQhzDsL6Z7Z+4Jo5TIt5+O94QkuNUAh99BC+9FFbSVQpxQmKMkLRd\n28UcpzJ46y03DE718I9/hBAYaUVSzUUcw7AX8Lqk9yS9GX3GJq2Y4xRLwktVHadkmFXeMBLEG0rq\nlbgWjlNCfCjJqRbeeCPkdt5777Q1aUmbPYYoUNiGwD7R93mElUmOU3HMmwfTp4fJZ8epdO6+G046\nCZZJMpdmEbTZY5DUD9iZ4Lk5EOhIiDP/vUQ1c5wiGDcOttyyNAHIHCdJvvkG7r0XXn45bU2WJo6d\nOpwQUngegJlNI0SLdJyKw4eRnGrhiSfCS0wl9m7jGIYFZtbUvCHJU6s7FYsbBqdauPNO6NMnbS1y\nE8cwPCBpALCapNOBYcBfk1XLcYrDl6o61cC0afDii8nF82ovbY7Emtm1kvYjBM/rBlxqZs8krpnj\nFIEvVXWqgTvvhGOPhc4VOv7SZhC9SsADjTlxmDsX1l0XvviisFUeHkTPKSeLF8Omm8LDD8OOOyZb\nV7FtO+/jI6k5wciXkr7I+sxtj7KOkwTvvANbbVV5S/8cJ5Onn4a1107eKLSH1lJ7fi/6W0GO2o6T\nH594dqqB226D009PW4vWafPdStLuklbJ2F5F0m7JquU4hePzC06lM306NDZW7qRzM3E63bcCX2Zs\nz4v2OU5FUc4VSZJ6ShovaYKkC3McP1/S6OjzpqRFklYrj3ZOpTJwIBxzDKxc4Z5gsUZjM/0YzGwx\nIWGP41QU5RpKktQBuBnoCXQHekvaOrOMmV1nZjua2Y7ARUCjmX2evHZOpdLUBLffXvnDSBDPMEyS\ndK6k5SR1lPQLPKm5U2F8/nlYlbTRRmWprgcw0cwmm9lCYBAhOkA+fgLcVxbNnIrlmWdgzTVh553T\n1qRt4hiGnxPiIk0DpgK7A1Vg85x64u23oXv3sq1IWh+YkrE9Ndq3FJJWBPYHHiyDXk4FUw2Tzs3E\ncXD7GDi2DLo4TtGU2eO5EMeDg4F/tzaM1K9fv2+/NzQ00NDQULRiTmXy0UcwfHiYY0iSxsZGGhsb\n2y0nr4ObpAvN7BpJf8lx2Mzs3HbXHhN3AnLa4txzQyL1884r/NxCnYAk7Q70M7Oe0fZFQJOZXZOj\n7EPA/WaWM3Gjt+364IorYMqU0GsoJ8U6uLXWY3gn+vs6Ld+QRGFvTI6TOGPGwMEHl626kcAWkroC\n0wk96t7ZhSStCuxNmGNw6pRvvoH+/eGpp9LWJD6tGYZjgEeB1czspjLp4zgF09QEo0fDTjuVpz4z\nWyTpbOApwgq9O8xsnKQzouMDoqKHAU+Z2dfl0cypRP71L+jWDbbdNm1N4tPaUNI7wI+AJ4GG7ONm\nNjtRzVrq4t1tJy/vvQf77QeTJxd3vsdKcpLke98LQ5xHHFH+upMYSrqVEGJ7U8JwUiYW7Xec1Bk1\nqjqWADr1x6hRMHUqHHJI2poURmuL+x4zs62BO81sk6yPGwWnYhg1qnzDSI5TCH/5C5x5ZvWlmm3N\nMDwQ/d2yHIo4TrG4YXAqkU8/DaG1f/aztDUpnNbsWAdJlwDdJP2asBqpGTOzG5JVzXHaxswNg1OZ\n3H57mFfo0iVtTQqnNcNwHGFVRQegwkM+OfXKBx/ACivAOuukrYnjLGHRorBE9dFH09akOFrLxzAe\n+IOksWY2tBjhknoCNxGMy1/zOAA1ADcCywEzzayhmLqc+sR7C04l8vDDsMkmsMMOaWtSHHEiy4yS\ndIekJwEkdZd0alsnxYlAGYUhvgU42My+CxxV6AU49Y0bBqcS+fOf4Zxz0taieOIYhruAp4H1ou0J\nwK9inBcnAuVPgAfNbCqAmc2Mo7TjNONLVZ1KY9QomDQJDjssbU2KJ45h6GJm9wOLAaJ/8otinBcn\nAuUWwBqSnpM0UtKJMeQ6DhAmnl9/3XsMTmVx7bXwy1/CcsulrUnxxFld+6WkNZs3ogBic2KcF8ed\nczlgJ2BfYEXgZUmvmNmEGOc6dc706cE4rJ8z4LXjlJ/Jk0PehQED2ixa0cQxDOcRYiZtKmkEsBbx\n5gKmARtmbG9I6DVkMoUw4fw18LWkF4DtCcNVLfDQxE42zfMLKtDhv1ShiR0nmxtvhFNPhVVWSVuT\n9pE3VlKLQtKyBEc3Ae9Gw0lxznmX0BuYDvwH6G1m4zLKbEWYoN4f6AS8ChxrZu9kyfJ4Ms5SXHYZ\nLFgAV13VPjkeK8kpBbNmwRZbhNwg663XdvlykESspGbBHYEzCeGDARol3dqWcYgTgdLMxkerncYC\nTcDt2UbBcfIxahSc6LNSToXQvz8cemjlGIX20GaPQdIdBANyN6HHcCKwyMzK5ujtb1VOLjbcEJ5/\nHjZtZ+Qu7zE47WX+fOjaFYYNK2smwTZJrMcA7Gpm22VsD5M0ttCKHKeUfPIJfPllcCJynLT5299g\nl10qyyi0hzjLVRdJ2rx5Q9JmxFuu6jiJ0ZyYp9CJ51Ihqaek8ZImSLowT5kGSaMlvSWpscwqOmWi\nqQmuvx5+85u0NSkdcXoMvwGGS5oUbXcFTk5MI8eJQZr+Cxle/T8irL57TdKQrIUVzV79+5vZVElV\nGErNicOQIbDqqrD33m2XrRbaNAxmNkxSN8KqJAPeM7P5iWvmOK0wahQceWRq1X/r1Q8gqdmrf1xG\nGffqrwPM4I9/DL2FtHqvSdDmUFK0smgFMxtjZmOBFSSdlbxqjpOflGMkuVe/A8Dw4TB7djppO5Mk\nzhzDaWb2WfNG9P305FRynNb57DOYOTOsGU+JQrz6DyD46VwqKT2NnUS44gq45BLo0CFtTUpLnDmG\nZSQtY2ZN8O34ahVHAXGqndGjQzjjZeK81iSDe/U7vPBCyOfcu3famiyhVF79cfwYrgM2AgYQ/BjO\nAD40s/PaXXtMfK23k8k118BHH4XwA6Wg0LXe7tXvAPz4x8EonHJK2prkJ0k/hgsJQ0dnRtvPAH8t\ntCLHKRUjRsDxx6dXv3v1OyNGwMSJtet5HytWUtr4W5XTjFlI4zlqFGywQWlkuuezUyi9eoV8C2ec\nkbYmrZNkj8FxKob334flly+dUXCcQnnttRAo7+GH09YkOdKbvnOcIhgxAvbYI20tnHrmiivgwguh\nU6e0NUkO7zE4VcXLL8Oee6athVOvjB4dvO7/+c+0NUmWOGG3twTOJ4TCaC5vZvbDBPVynJyMGFHZ\nq0Cc2uayy4KX8/LLp61JssRZrjoW6A+MIsr7TDAMryesW6YOPkHnMHduiHU/ezZ07Fg6uT757MTh\nlVfg6KNhwoTqMQxJTj4vNLP+RejkOCXlP/8JYTBKaRQcJw5mcPHF0Ldv9RiF9hBn8vlRSf8jaV1J\nazR/EtfMcbLwiWcnLYYNC17OffqkrUl5iNNj6EOIDXN+xj4D2pk3y3EKY8QIOPPMtss5Tilp7i1c\ncQUsWyfLdeKE3e5aBj0cp1WamuDVV0OmLMcpJw89BAsXhvmFeiHOqqSOhHAYexN6Cs8Dt5rZwoR1\nc5xvGTcO1lwT1l47bU2cemLxYvjd70KGthSDNpadOB2j/lG5WwhB9E6M9v0sQb0cpwUjRrj/glN+\n7rknvJD07Jm2JuUljmHY1cy2y9geFi1hdZyy4Y5tTrlZsCCsQrrnntrKzhaHOJ2jRZI2b96QtBmw\nKDmVHGdpfEWSU27694dttoHvfz9tTcpPHAe3fYGBwKRoV1fgZDMbnqxqLXRwJ6A6ZtYs2GSTkLkt\niUxZ7uDmZDNrFmy9NTQ2QvfuaWtTPIk5uJnZMEndgC0Jk8/vmtmCInR0nKJ45RXYbbfaS5/oVC6X\nXx5WIVWzUWgPeQ2DpH0jo3AkwSA0W53NIyv0r7Jo6NQ9PozklJN334V774V36jitUmtzDHtHfw+O\nPgdFn+ZtxykLlbgiSVJPSeMlTZB0YY7jDZLmSBodfX6Xhp5O4Zx/fgirvdZaaWuSHnHmGDY1s/+2\ntS9JfBy2flm0CFZfHT78MPxNgiJyPncg5Hz+ETANeI2lcz43AL82s0PakOVtu4J49ln4+c/h7bdr\nI99CsXMMcVYlDc6x74FCK3KcYnjjDdhoo+SMQpH0ACaa2eTI0XMQcGiOcnW2yLG6WbwYzjsP/vjH\n2jAK7aG1OYatge7AapKOIDRyA1YB6iC+oFMJDB8OP6y8zB/rA1MytqcCu2WVMWBPSWMIvYrzzayO\nR60rnzvvhNVWg8MPT1uT9GltVVI3wlzCqrScU/gCOC1JpRynmeHDKzLhepyxn1HAhmb2laRewMOE\nZ8qpQObODc5sjz5af85suchrGMzsEeARSXuY2ctl1MlxAPjmmzDxfO+9aWuyFNOADTO2NyT0Gr7F\nzL7I+P6EpP+TtIaZzc4W1q9fv2+/NzQ00NDQUGp9nTb4/e/hgANg553T1qR9NDY20tjY2G45cSaf\n/waca2afR9urA9ebWdkSLPoEXX3y0ktw7rkhx26SFDH5vCxh8nlfYDrwH5aefF4H+MTMTFIP4J+5\nIhV7206fN96A/fcPE85duqStTWlJMoPbds1GAcDMPpO0U6EVOU6hVOj8Ama2SNLZwFNAB+AOMxsn\n6Yzo+ADgKOBMSYuAr4DjUlPYyUtTE5x1Fvzv/9aeUWgPcQyDMrvAUfY290F1Emf4cLjggrS1yI2Z\nPQE8kbVvQMb3WwgRiZ0KZuDAYBxOPTVtTSqLOENJJwGXAP8krEw6GrjSzMqWMsW72/XH118HB6MZ\nM2DllZOty2Ml1SezZoWQF08+CTvumLY2yZCYH0NkAI4APgY+Ag6PaxTa8g7NKLerpEXRsljHYcQI\n2H775I2CU79cdBEce2ztGoX2EDeD6RrAPDMbKGktSZuY2aTWToi8Q28mwztU0pDMCbqMctcAT+IO\nQU7E8OHYgAW5AAAcOElEQVSwzz5pa+HUKq+8Ao89FjIDOkvTZo9BUj/gAuCiaFdH4J4YsuN6h55D\n8K7+NI7CTn3w3HOVOfHsVD8LF8KZZwYP51VXTVubyiROSIzDCf/Q5wGY2TQgTgc/l3fo+pkFJK0f\nye4f7fLBVocvvoCxYz2iqpMM114L66wDxx+ftiaVS5yhpAVm1qTIHVBS55iy4/yTvwn4bbTWW/hQ\nkgO8+CL06AErrJC2Jk6tMW4c3HgjjBzpHs6tEccwPCBpACFm0unAKcBfY5zXpncosDMwKDI6XYBe\nkhaa2ZBsYe4dWj8k7b9QKu9Qp7pYvBhOOQUuuww23jhtbSqbNperAkjaD9gv2nzKzJ6JcU6b3qFZ\n5QcCj+ZKAORL+uqLnXaCm28uXw4GX65aH9x0Ezz0UJi/WibOIHoNkKTnM2b2NPB0IYJjeoc6Tgtm\nz4b334ddd01bE6eWeP/94N388sv1YxTaQ94eg6QvyT9PYGa2SmJaLa2Lv1XVCQ89BLffDkOHlq9O\n7zHUNmaw774hSN7556etTXlJosewXTmztDkOuP+CU3puuw3mzYNf/SptTaqH1jpVDwBIGlYmXRzH\nDYNTUiZMgN/9LsRE6uAR3mLTWo+hg6RLgC0l/ZqWS0nNzG5IVjWn3vjwQ/j00zD57DjtZeFCOOGE\nkGuhe/e0takuWusxHAcsJkwcrwyslPHxCDZOyXn8cejZ0ycHndJwxRWwxhpw9tlpa1J9tJbBbTzw\nB0ljzayMU4FOvfL443DiiWlr4dQCI0aEuYXRo92RrRjivJuNknSHpCcBJHWX5NHLnZLy9dfwwguw\n335tl3Wc1pg7Nwwh3XorrLtu2tpUJ3EMw10EH4b1ou0JgM/vOyXluedghx1g9dXT1iQeHlK+cjn3\n3LA89bDD0takeoljGLqY2f2E+QaiSKmLEtXKqTuGDoUDD0xbi3hkhJTvCXQHekvaOk85DylfRu6/\nP+QKv/HGtDWpbuIYhi8lrdm8IWl3YE5yKjn1hlmYX6gWw4CHlK9I3n03TDQPGgQrrZS2NtVNnJAY\n5wGPAptKGgGsRUh07jglYdy4kHd3m23S1iQ2uULK75ZZICOk/A+BXfGQ8ony1Vdw9NFhJdLOO6et\nTfXTqmGIusJ7R5+tCN3hd83smzLo5tQJjz8ewhVU0eqRkoaU98jB7efss2HbbeGMM9LWJF1KFTm4\nzeiqkl4zs1RDmnk8mdqmoSHEsDnooHTqLzSeTDSc2s/MekbbFwFNZnZNRpn/ssQYdAG+Ak7LDinv\nbbv9DBwYku/85z8+hJRNsbGS4hiGG4HlgPsJWdxE8HweVYyixeAPT+0yZw5suCF89BGsuGI6OhRh\nGDykfIUwdmxYgfT88+7dnIskw27vSOg6X5613yPaOO3m6afh+99PzygUg4eUrwzmzAnzCjfe6Eah\n1MRK1JM2/lZVu/TpA7vskm7YAg+7XX0sXgwHHwybbAK33JK2NpVLsW0773JVSX2iLnO+4x0lnVxo\nhY7TTFMTPPFEVS1TdSqEiy6C+fNDVjan9LQ2lLQS8Jqk8cBIYAZhfuE7wC6EVUq3J66hU7OMHAlr\nrhne+hwnLn/7Gzz4YJhsXm65tLWpTVodSoqW2X0P+D6wUbT7A+DfwIhy9YG9u12b9O0b1p9fe226\nevhQUvXwyitwyCEhhEoV+b2kRlKTz8sAPczsD8Wp5Tj5eeQR+NOf0tbCqRamToUjj4Q773SjkDSt\nhsQws8VA7zLp4tQREybAxx+HFUmO0xZffgmHHhoC5KXl71JPxFmu+m9JN7PEjwGAcvoxOLXH4MFw\nxBGebtFpm4UL4aijQma/Cy5IW5v6II6DWyM5QgCYWdn8GHwctvbYaSe4/vrKyO/scwyVi1lY0jx7\nNjz0ECwb51XW+ZbEHNzMrKEojRwnD++/D9Omwd57p62JU+lcckmImjpsmBuFchLrVks6iBB3fvnm\nfWaW7QntOLEYPBgOP9yHkZzWufnmsCz1pZegc+e0takv2szHIGkAcAxwLsGP4Rhg44T1cmqYwYND\nKAPHyceDD8LVV8OTT0KXLmlrU3/EmWN408y2lTTWzLaTtBLwpJmVbT2JJBs61OjUCTp1guWXDykg\n11orRFOsonDNdc+kSdCjB8yYUTlDAz7HUFk89hicemowCjvumLY21U2SQfS+jv5+FSUfmUXwfi4r\nN90ECxaEz/z58Nln8MknYXJqrbVgnXWCB+1mm8Hmm4e/W27pycArjQcfDMNIlWIUnMri6afhlFOC\ncXCjkB5xHs9HJa0OXAuMIqxQKnsojKeeyr1/3jz49NMQtnnSpDCx+eKLcNddITPYssuGBrbTTuHv\n7rvDBhuUVXUngwceCFm2HCeb556DE04Iq4969Ehbm/qmoOiqkjoBy5tZWXM+F9vdNgvekqNHw6hR\n4TNiRBiGamgISyUbGmC99UquspODDz4IaRdnzKisGDc+lJQ+//538Gv55z/DM+mUhiQT9awAnEWI\nl2TAi0B/M5tfjKLFUMqHp6kJ3n47vJ00NoYEHxtuCIcdFj7bb+9zFklxww3h3t9xR9qatMQNQ7qM\nGBGevX/8A37847S1qS2SNAwPAHOBewirkn4CrGpmZVtXkuTDs3hxaJgPPxw+ixeHRnrCCeHt1o1E\n6dhzT/j976Fnz7Q1aYkbhvR49lno3TtETO3VK21tao8kDcM7Zta9rX1JUq6Hxyy80Q4eHBrqiivC\nT38ajIRPYrePKVNghx3CXFAlDSNBcQ+PpJ7ATYQMbn/NzPccHT+UkPWwKfr8xsyG55BTt4bhkUfg\ntNPC8+bOjslQ8kQ9GYyStEdGRbsDrxdaUTUgwXe/C/36wcSJ8H//Fyawu3cP2aKefTYYD6dwBg8O\n4ZIrzSgUg6QOwM1AT4LjZ29JW2cVe9bMtjezHYE+wG3l1bKyueceOOMMGDrUjUIl0loGt+YVS7sA\nL0n6QNJkYASwi6Q3JY0tg46psMwyocHeeWeYwD7kEPjlL2HbbeGvf4Wvv25bhrOEu++GE09MW4uS\n0QOYaGaTzWwhMAg4NLOAmc3L2FwJmFlG/Sqa/v3ht7+F4cNDWlen8mitx/Cf6G9PYFPgB0BD9L0X\ncDBwSJLKVQqdO4cu75tvBn+Khx+GjTeGyy4LCcmd1hkzJvid1NBqk/WBKRnbU6N9LZB0mKRxwBOE\nyAF1jRlceilcdx288ELoiTuVSWt+DAIws8nlUaXykeBHPwqfd9+Fq64KznS/+EWIE7/KKmlrWJk0\n9xaWiTNwWR3EGlA0s4eBhyXtBfwd2DJXuX79+n37vaGhgYYasqDNzJ8fHNcmTYKXX4a1105bo9qk\nsbGRxsbGdsvJO/ksaSpwA5GByMLM7IZYFbQ9SXc8cEFUzxfAmWY2NqtMxU7QvfceXH558Nj81a+C\ngfCAX0tYuDAsB37hBejWLW1tclPoBF00z9bPzHpG2xcBTdltO+uc9wnZEGdl7a/Ytl0qZs4MK/3W\nWy+8JKywQtoa1Q9JTD53AFYmjI9mf1aOqVScSbr/Anub2XbAFVTZJF23bmEi7YUX4I03YOut4d57\nfZK6maeegk03rVyjUCQjgS0kdZXUETgWGJJZQNJmUc50JO0EkG0U6oH33oM99gjzdYMGuVGoFlrr\nMYyOVlQULzysZuqb8Wb1W4B8OaSj0BtvmtkGWfur5q3q3/8OQ0vLLx/yGdf75NrRR4ehtzPOSFuT\n/BS5XLUXS3rCd5jZ1ZLOADCzAZIuAE4CFgJfAr82s9dyyKmatl0oQ4fCySeHIddTT01bm/qk5H4M\nJTIMRwH7m9lp0fYJwG5mdk6e8ucD3czs9Kz9VfXwNDWFWE2XXBKcdq69FtZcM22tys/s2aG3MHky\nrLZa2trkxx3cSsvixWF49Y474P774XvfS1uj+iWJ6Ko/aoc+zcRu8ZL2AU4BcjajapqgW2aZMNF2\n1FHQt2/wjfjLX8J2PXH//bD//pVnFEo1QecszaxZcPzxYTn3yJHwnbLHYXZKQUFB9AoWHnOSTtJ2\nwL+AnmY2MYecqn6revnlYCi6d4dbbqmfh2X33UMIjAMOSFuT1vEeQ2kYOTIMHR55ZEiyUwvOjNVO\nkp7P7SHOJN1GBKNwQi6jUAvssUeI8LrVVrDddmGyutZ5990QTXW//dLWxEmaxYuDIejVC/74x+Cn\n4Eahukm0xwCxJun+ChwOfBidstDMemTJqJm3qlGjQuylXXYJvYeVY63vqj4uvhi++Sb8k6h0vMdQ\nPJMnBx+VDh1CfLGNNkpbIyeTxILoVQLV/vBkM29eWLn0wgthHL7WMlUtXgxdu4ZVKdtum7Y2beOG\noXDMQs/317+GCy4Ifzt0SFsrJ5skU3s6JaZz5xBv6b77wlDL738PZ59dOyG+n3kmeLZWg1FwCmfK\nFDjnnBBo8plnQtRcp7aonSAFVUjv3mFi+u674ZhjQk+iFrjlFjjrrLS1cErN4sXBN2fHHcPn9dfd\nKNQqPpRUASxYEBzAxowJMeqreZx20iTYdVf48MOQz6Ia8KGkthk9Gk4/PfR2BwyALXNGfXIqjUpd\nleTEoFMnGDgwTErvvnvIKFetDBgAJ51UPUbBaZ2PP4YzzwxZ9846K6TEdaNQ+7hhqBAkOO+84C16\n2GHBc7ramD8/5K8488y0NXHay1dfwZVXwjbbhPhG48aF8Ba1Mg/mtI5PPlcYvXrB88+HxEDvvx9C\nC1TLw/jPf8JOO8EWW6StiVMsixaF1UaXXhp6r6++CpttlrZWTrlxw1CBbL11GE7q1Qs+/TRM5lbD\nUsD/+7/gv+BUH998E/wQrr4a1l8/LKPec8+0tXLSwoeSKpS11grjuRMmhNVLCxakrVHrvP46fPQR\nHHhg2po4hTB/fjDoW2wRenwDBwb/GjcK9Y0bhgpm5ZXh8cfDMsGDDoIvv0xbo/zccgv8/OfV0bNx\nwqqxiy8OKWqfeCIYhaefDnkTHMcNQ4Wz/PLhoe3aFX74w5A7udKYPRv+9S+PuV/pNDWFf/6HHRb8\nEL76KvQOHn0Udtstbe2cSsL9GKoEsxB24KWXgrfpqqumrdESrr8+ZK/7+9/T1qQ4atmPwQzefDNk\nFbzvvhAC/X/+J4TG9hS0tY/7MdQ4EtxwQ3AeO+AA+OKLtDUKLF4M/fuHfzb1hKSeksZLmiDpwhzH\nj5c0RtJYSS9FoeXLghm89VZYbrrttnDwwWH/kCHBgDc7qjlOPrzHUGU0NYWx/HffDUHq0n7ABw8O\nPYYRI6pnWW02hb5VRbnM3yUks5oGvAb0NrNxGWX2AN4xszmSehLykuyeQ1ZJ2vYXX8CwYaFNPPlk\nmOs58EA47rgwkbyMvwLWJR5dtY5oagrj+R9+CI89ll6CdbPQg/nd78K4dbVShGEoSS7z6FjBbdss\nBLB75ZUQa+uVV+C990LejwMOCMuct9yyeg21Uzo8umodscwyITrrSSfBEUeEIYI0EqMMHx4C/x1y\nSPnrTpn1gSkZ21OB1qZvTwWGFlLB4sUwc2ZYAjx5MowfHz7jxoW/q6wSHND22CO0gx13DKFVHKcU\nuGGoUjp0CFFZDzssBOC7447yvyFec02IxV+HwxQly2UO0K1bPxYtCl7HHTs2MG9eAzNnwuqrhzSw\nG24YnB6/973QU9xyy+Dn4jjZlCqfuQ8lVTlffgkNDWGCsW/f8tU7alToKfz3v9CxY/nqTYIihpJK\nkss8KmNDhhjLLx+WJq+4YjAGa6/t6TGd9uNzDHXMRx+FCcZLLw2BzsrBcceF+YXzzitPfUlShGFY\nljD5vC8wHfgPS08+bwQMJ+Qyf6UVWd62ncRww1DnjB8PP/hB8CXYb79k63r//eAQNWlSbeSsLubh\nKUUu80iOt20nMdwwOLz4YpiMTjrd4llnhfHvK69Mro5yUssObk5944bBAUJUzAsvhJEjoUuX0sv/\n+OMwETpuHKyzTunlp4EbBqdWcc9nB4Bjjw2f3r3DKpdS8+c/B/m1YhQcx1ka7zHUIIsWhVSMu+wC\nf8jpclUcM2eGpZIjR8Imm5RObtp4j8GpVbzH4HzLssvCoEHhM3hw6eRecw0cc0xtGQXHcZbGeww1\nzKhRsP/+0NgYcve2h+nT4bvfDZE611+/JOpVDN5jcGoV7zE4S7HTTnDddXD44TBnTvtkXXll8JGo\nNaPgOM7SeI+hDjjzzGAY/vGP4sJmTJ4MO+8cfCVqMRSD9xicWsV7DE5ebrgBxowJhqEYLrss+C7U\nolFwHGdpvMdQJ4wZAz/+cQjRvOmm8c8bPx722gsmTAjZv2oR7zE4tYr3GJxW2X57uOgiOOGEwvwb\n+vYNKUVr1Sg4jrM03mOoI5qaQhKXPfaAfv3aLj9mTPCHmDgx/UxxSeI9BqdW8ZAYTixmzAirlR58\nMERkzYdZGHo69FA455zy6ZcGbhicWsWHkpxYrLsuDBgAxx/f+hLWIUOCEfn5z8unm+M4lYH3GOqU\n//kfmDUL7rtv6SWsCxZA9+5w662h11DreI/BqVW8x+AUxHXXwTvvwMCBSx+76abg5VwPRsFxnKVJ\n1DBI6ilpvKQJki7MU+bP0fExknZMUh9nCSusEGIpXXhhCKHdzIwZcO21cP316elWDbTVtiVtJell\nSfMl1UCeO6eeSMwwSOoA3Az0BLoDvSVtnVXmAGBzM9sCOB3on5Q+zZQiUXatyOrePYS66N0b5s8P\n+y6+OCSc33zz9PQqt6xCidO2gVnAOcB15dKrUu+vy0pPVrEk2WPoAUw0s8lmthAYBByaVeYQ4G4A\nM3sVWE1SopH+K/UHTEvWaafBFlvABRfAa6/Bk0/CJZekr1c5ZRVBm23bzD41s5HAwnIpVan312Wl\nJ6tYkjQM6wNTMranRvvaKrNBgjo5WUhw221hFdJRR4UexCqrpK1VxROnbTtO1ZKkYYi71CJ7xtyX\naJSZ1VcPq5N23x369Elbm6rA26hT0yS2XFXS7kA/M+sZbV8ENJnZNRllbgUazWxQtD0e+IGZfZwl\nyx9EJ1EKWdIXp21nlO0LfGlmOafzvW07SVPMctVlk1AkYiSwhaSuwHTgWKB3VpkhwNnAoOhh+zzb\nKEBxF+Y4CRKnbTfTatv1tu1UIokZBjNbJOls4CmgA3CHmY2TdEZ0fICZDZV0gKSJwDzg5KT0cZxS\nEadtS/oO8BqwCtAk6RdAdzP7MjXFHScmVeH57DiO45SPivJ8LqVDXAwHpOMjGWMlvSRpu/boFZXb\nVdIiSUe08xobJI2W9JakxnZcYxdJT0p6I5LVJ4+cOyV9LOnNVuqKe99blVXgfW9Tr6hcnPse5xpj\n3fdC8Xb9bZmytuuorLdtimjbZlYRH0KXfCLQFVgOeAPYOqvMAcDQ6PtuwCvtkLUHsGr0vWd7ZGWU\nGw48BhzZDr1WA94GNoi2u7RDVj/g6mY5BKerZXPI2gvYEXgzT12x7ntMWbHuexxZce97TL1i3Xdv\n19XTrr1tF9+2K6nHUEqHuDgOSC+bWXN80VfJ7z8RRy8IXq6DgU/beY0/AR40s6mRnjPbIWsGYYyb\n6O8sM1sqTY+ZvQh81oresR0R25JVwH2PoxfEu+9xZMW974Xi7TpQ9nYd1eNtu4i2XUmGoZQOcYU6\nIJ0KDC1WL0nrExpvc0iPfBM3cfTaAlhD0nOSRko6sR2ybge2kTQdGAP8Io+stkjKEbG1+94mBdz3\nOMS974Xi7TpQie06X31137aTXK5aKKV0iIt9EyXtA5wCfK8det0E/NbMTJJy6FiIrOWAnYB9gRWB\nlyW9YmYTipB1MfCGmTVI2gx4RtL2ZvZFjHOzKakjYoz7Hoe49z0Oce97oXi7DlRquwZv20tRSYZh\nGrBhxvaGBOvdWpkNon3FyCKaHLod6Glm+bpicWTtTPDFgDDm2UvSQjMbUoSsKcBMM/sa+FrSC8D2\nQPaPGEfWnsCVAGb2vqRJwJaEdfiFEPe+xyLmfY9D3Pseh7j3vVC8XQcqsV3nqs/bNlTU5POywPuE\nSaeOtD1Jtzv5J9biyNqIMMm1e3v1yio/EDiiHXptBTxLmHhaEXiTsP69GFk3AH2j7+sQHrA18ujW\nlXgTdHnve0xZse57HFlx73tMvWLdd2/X1dWuvW0X17YrpsdgJXSIiyML+D2wOtA/ssoLzaxHkbJK\neY3jJT0JjAWagNvN7J0i9boKGChpDGE+6QIzm50tS9J9wA+ALpKmAH0J3c+C7nscWcS87zFlxSbG\nNca674Xi7Tq9dg3etott2+7g5jiO47SgklYlOY7jOBWAGwbHcRynBW4YHMdxnBa4YXAcx3Fa4IbB\ncRzHaYEbBsdxHKcFbhgKRNJ6kh7I2N5W0p3R94PVSvjiNuReJmnfHPsbJD1avMbpE+caJG0n6Y5y\n6eS0xNt14dRyu64YB7dqwcymA0dn7PoN8Jfo2KNAUY3dzPq2X7vqxczGStpM0tpm9kna+tQb3q6T\noVrbtfcY8qCQIGOMpE6SOiskuOguqaukt6IynQju769F230k/SX6fpekPykk7Hhf0pEZsi9USObx\nhqSrMsofGX3vKWmcpNeBwzPO66yQlONVSaMkHZJR778kPSHpPUnXZJzTU9LrUV3PtiYn6/o7S3o2\nOndsRl1dI91ui+7JU5KWz7hnYxUSglyrHIlD2qj7CVr+c3JKjLdrb9exiBPTo14/wBXAtcDNwIWW\nFZOEEFvl0YzyPwX+En2/C7g/+r41MCH63gt4CVg+2l7NMuKhAMsDHwKbRfvvB4ZE368Cjm8+D3iX\nEPukDyG+zMpAJ2AyIZzwWpGsjbPqyikn69o7ACtH37tk6N8VWAhsl6Ffs6y3gN2i71cDY6PvDc33\nKU/dK0Tb+zTfM/94u/Z2nd7Hh5Ja53JCxMavCUkzstmYkDQkFwY8DGAh1ktz8o8fAXea2fzo2OcZ\n54gQ8GqSmb0f7bsHOD36vh9wsKTzo+1OhMBdBgyzKOywpHcIDX0N4AUz+yCrrlxyNiQ05maWAa6W\ntBchvsp6ktaOjk0ys7HR99eBrpJWBVaykOwE4F7goBz3Jd81vEu4l11znOOUFm/X3q5bxQ1D63QB\nOhPeMlYAvspRprU46d/kKGdtnJMdvCq77BGWFUdd0m7Agoxdiwm/bWuBsJaSk8XxhOvfycwWK4Q2\nXj46ll3XCjnOb+0a89WtNnR2SoO3a2/XreJzDK0zAPgd4S3hmhzHJwPfydiOk0zjGeBkSSsASFo9\n45gB4wlvKptG+3pnHH8KOPfbypYkLs9VrwGvAHtL6hqVX6MNOZmsAnwSPTz7EN4i82IhpeEXkpqj\nSR6Xp2hrda8LfNBaPU5J8Hbt7bpV3DDkQdJJwAIzGwT8AdhVUgOhYTZb/zGEBCHNZB4j13czewoY\nAoyUNBo4L7NeM1tA6GI/Hk3SfZwh5wpguWgi7C3gsjz1NsuaGcn6l6Q3gPvakJPJP4BdJI0FTgTG\n5bmuzO1Tgduj61oRmJOjTGt19wBeyKGLUyK8XXu7joOH3W4nku4C+meMQdYtkjqb2bzo+2+Bdczs\nVwWc3wgcY1W0rK9W8Xa9hHps195jaD/XAT9PW4kK4cBoSd+bhHy3/xv3RIWUiBOr6eGpcbxdL6Hu\n2rX3GBzHcZwWeI/BcRzHaYEbBsdxHKcFbhgcx3GcFrhhcBzHcVrghsFxHMdpgRsGx3EcpwX/D4HL\nfzl2Kjb4AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# example:−2.7.page no.−50.\n", "# program to plot the reflection coefficients for parallel and perpendicular polarized plane waves incident from free space on to a dielectric region with Er=2.55,versus incidence angle.\n", "\n", "from pylab import plot,subplot,title,xlabel,ylabel\n", "from sympy import acos,asin\n", "import numpy as n\n", "import math as m\n", "\n", "Er=2.55; # relaitve permittivity of dielectric medium .\n", "N1=377.; # intrinsic impedence\n", "N2=N1/m.sqrt(Er); # intrinsic impedence of dielectric medium.\n", "xb=asin(m.sqrt(1./(1.+1/2.55)));# brewster angle valid only in case of parallel polarization.\n", "xt=acos(m.sqrt(1.-(1./Er)**2.*m.sin(xb))); # angle of transmission .\n", "xi=n.arange(0,m.pi/2,0.05); # incidence\n", "print \"The wave impendaces are %d ohm , %d ohm\"%(N1,N2)\n", "# for parallel polarization angle .\n", "N2=N2*m.cos(xt);\n", "N1=N1*n.cos(xi);\n", "Tpar=(N2-N1)/(N2+N1);\n", "w=abs(Tpar);\n", "\n", "# result\n", "subplot(121)\n", "title ('parallel polarization');\n", "xlabel('xi(incidence angle)');\n", "ylabel('Tpar(reflection coefficient)');\n", "plot(xi,w)\n", "# for perpendicular polarization .\n", "#NOTE:− in case of this polarization . there is no brewster angle .\n", "xt=acos(n.sqrt(1-(1/Er)**2.*m.sin(xb)));\n", "n1=377.*m.cos(xt);\n", "n2=(377/m.sqrt(Er))*n.cos(xi);\n", "Tper=(n2-n1)/(n1+n2);\n", "z=abs(Tper);\n", "#result\n", "subplot(122)\n", "\n", "title ('perpendicular polarization');\n", "xlabel('xi(incidence angle)');\n", "#ylabel('Tper(reflection coefficient)');\n", "plot(xi,z);" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }