{ "metadata": { "name": "", "signature": "sha256:da3f0d89152a41cee5e69bb72810cbf709f6002aabb5d20615441a6c713ff653" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "chapter05:Cavity Resonators" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.1, Page number 174" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate minimum distance between two plates\n", "import math\n", "\n", "#Variable declaration\n", "a = 3 #radius of circular waveguide(cm)\n", "fo = 10*10**9 #frequency for TM011 mode(Hz)\n", "P01 = 2.405\n", "c = 3*10**10 #velocity of proapagation(m/s)\n", "\n", "#Calculation\n", "d = math.sqrt((math.pi**2)/(((4*math.pi**2)/9)-((P01/a)**2)))\n", "\n", "#Result\n", "print \"The minimum distance between two plates is\",round(d,2),\"cms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum distance between two plates is 1.62 cms\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.2, Page number 174" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate lowest resonating frequency of a circular resonator\n", "a = 2.\n", "b = 1.\n", "d = 3.\n", "#For dominant mode TE101,\n", "m = 1.\n", "n = 0\n", "p = 1.\n", "\n", "c = 3*10**10 #velocity of propagation(m/s)\n", "\n", "#Calculation\n", "fo = (c/2)*(((m/a)**2+(n/b)**2+(p/d)**2))**0.5\n", "\n", "#Result\n", "print \"The lowest resonating frequency of a rectangular cavity resonator is\",round((fo/1E+9)),\"Ghz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lowest resonating frequency of a rectangular cavity resonator is 9.0 Ghz\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.3, Page number 175" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate resonating frequency of a circular resonator\n", "import math\n", "\n", "#Variable declaration\n", "D = 12.5 #diameter of resonator(cm)\n", "d = 5 #length of resonator(cm)\n", "P01 = 2.405 #dominant mode TM01\n", "c = 3*10**10 #velocity of propagation(m/s)\n", "\n", "#For TM012 mode,\n", "m = 1\n", "n = 0\n", "p = 2\n", "\n", "#Calculation\n", "a = D/2\n", "fo = (c/(2*math.pi))*((P01/a)**2+((p*math.pi)/d)**2)**0.5\n", "\n", "#Result\n", "print \"The resonanat frequency of a circular resonator is\",round((fo/1E+9),2),\"GHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resonanat frequency of a circular resonator is 6.27 GHz\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5.4, Page number 175" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate lowest resonating frequency of a circular resonator\n", "a = 3.\n", "b = 2.\n", "d = 4.\n", "#For dominant mode TE101,\n", "m = 1.\n", "n = 0\n", "p = 1.\n", "\n", "c = 3*10**10 #velocity of propagation(m/s)\n", "\n", "#Calculation\n", "fo = (c/2)*(((m/a)**2+(n/b)**2+(p/d)**2))**0.5\n", "\n", "#Result\n", "print \"The lowest resonating frequency of a circular resonator is\",round((fo/1E+9),2),\"Ghz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lowest resonating frequency of a circular resonator is 6.25 Ghz\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }