{ "metadata": { "name": "", "signature": "sha256:d1145daae7a009dc147f6efee5af89bfe5d87a34b4299d2e73cdea767a001b6c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter8:AVALANCHE TRANSIT-TIME DEVICES" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg8.2.1:pg-331" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#(a)Calculate the maximum CW power\n", "n=0.15 #efficiency\n", "Vomax=100 #maximum operating voltage in volt\n", "Iomax=200*(10**-3) #maximum operating current in ampere\n", "Pdc=Vomax*Iomax \n", "P=n*Pdc \n", "print\"The maximum CW power(in Watts)is =\",int(P),\"W\"\n", "\n", "#(b) Calculate the resonant frequency\n", "L=6*(10**-6) #drift-region Length in meter\n", "vd=2*(10**5) #carrier drift velocity in m/s\n", "f=vd/(2*L) \n", "f=f/(10**9) #in GHz\n", "print\"The resonant frequency(in GHz)is =\",round(f,2),\"GHz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum CW power(in Watts)is = 3 W\n", "The resonant frequency(in GHz)is = 16.67 GHz\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg8.3.1:pg-334" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the avalanche-zone velocity\n", "J=20*(10**3) #current density in A/cm**2\n", "q=1.6*(10**-19) #charge of electron in C\n", "NA=2*(10**15) #Doping Concentration in /cm**3\n", "vs=J/(q*NA) \n", "print\"Avalanche-zone velocity(in cm/s)is =\",\"{:.2e}\".format(vs),\"cm/s\"\n", "\n", "print('This means that the avalanch-zone velocity is much larger than the scattering-limited velocity') " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Avalanche-zone velocity(in cm/s)is = 6.25e+07 cm/s\n", "This means that the avalanch-zone velocity is much larger than the scattering-limited velocity\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg8.4.1:pg-338" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#(a) Calculate the break down voltage\n", "q=1.6*(10**-19) #charge of electron\n", "N=2.8*(10**21) #Donor Concentration /m**3\n", "L=6*(10**-6) #silicon length in meter\n", "er=11.8 #Relative dielectric constant of silicon\n", "es=8.854*(10**-12)*er #permittivity of silicon in F/m\n", "Vbd=(q*N*(L**2))/es \n", "print\"The break down voltage(in Volts) is =\",round(Vbd,2),\"V\" \n", "\n", "#(b)Calculate the break down electric field\n", "Ebd=Vbd/L \n", "print\"the break down electric field is =\",\"{:.3e}\".format(Ebd),\"V/m =\",\"{:.3e}\".format(Ebd/100),\"V/cm\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The break down voltage(in Volts) is = 154.37 V\n", "the break down electric field is = 2.573e+07 V/m = 2.573e+05 V/cm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Eg8.5.1:pg-346" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#(a)Calculate the power gain in decibels\n", "R=25 #R=f0/fs ,ratio of output frequency over signal frequency\n", "yQ=10 #figure of merit\n", "x=((yQ)**2)/R \n", "PG=(R*x)/((1+sqrt(1+x))**2) \n", "PG=10*math.log10(PG) #calculating in dB\n", "print\"The power gain (in dB)is =\",round(PG,3),\"dB\" \n", "\n", "#(b)Calculate the noise figure in decibels\n", "\n", "Td=350 #Diode temperature in degree Kelvin\n", "To=300 #ambient Temperature in degree Kelvin\n", "F=1+(((2*Td)/To)*((1.0/yQ)+(1.0/yQ**2)))\n", "F=10*log10(F) #calculating in dB\n", "print\"The noise figure (in dB)is =\",int(round(F)),\"dB\"\n", "\n", "#(c)Calculate the band width\n", "y=0.4 #factor of merit figure\n", "BW=2*y*sqrt(R) #R=fo/fs\n", "print\"The band width is =\",int(BW)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The power gain (in dB)is = 9.8 dB\n", "The noise figure (in dB)is = 1 dB\n", "The band width is = 4\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }