{ "metadata": { "name": "", "signature": "sha256:de66edc6628557b633dd9783c4dabb08e00d657b0d4a1fadad535f3bd5215433" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter9-Columns and struts of uniform section" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg350" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate m1 and m2,m3,m4,m5,m6,m7,m8,m9\n", "## n =l/k\n", "n1 = 40.;\n", "n2 = 60.;\n", "n3 = 80.;\n", "n4 = 100.;\n", "n5 = 120.;\n", "n6 = 140.;\n", "n7 = 160.;\n", "n8 = 180.;\n", "n9 = 200.;\n", "E = 13000.;## tons/in**2\n", "##m = P/A\n", "m1 = 4*math.pi**2 *E/n1**2;## tons per sq. inch\n", "m2 = 4*math.pi**2 *E/n2**2;## tons per sq. inch\n", "m3 = 4*math.pi**2 *E/n3**2;## tons per sq. inch\n", "m4 = 4*math.pi**2 *E/n4**2;## tons per sq. inch\n", "m5 = 4*math.pi**2 *E/n5**2;## tons per sq. inch\n", "m6 = 4*math.pi**2 *E/n6**2;## tons per sq. inch\n", "m7 = 4*math.pi**2 *E/n7**2;## tons per sq. inch\n", "m8 = 4*math.pi**2 *E/n8**2;## tons per sq. inch\n", "m9 = 4*math.pi**2 *E/n9**2;## tons per sq. inch\n", "print'%s %.d %s %.d %s %.d %s %.d %s %.d %s %.d %s %.d %s %.d %s %.d %s'%('l/k : ',n1,' ',n2,'',n3,' ',n4,' ',n5,'',n6,'',n7,'',n8,'',n9,'' )\n", "print'%s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s %.1f %s '%('P/A:',m1,'',m2,'',m3,'',m4,'',m5,'',m6,'',m7,'',m8,'',m9,'')\n", "\n", "##there is a minute error in the answer given in text book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "l/k : 40 60 80 100 120 140 160 180 200 \n", "P/A: 320.8 142.6 80.2 51.3 35.6 26.2 20.0 15.8 12.8 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg351" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The collapsing load\n", "d = 1.;## inches\n", "t = 1/8.;## inches\n", "l = 10.;## feet\n", "E = 13500.;## tons/in**2\n", "D = d+2.*t;## inches\n", "I = (math.pi/64.)*(D**4. - d**4.);## in**4\n", "P = 20.25*E*I/(12.*l)**2. ;## tons\n", "print'%s %.2f %s'%('The collapsing load, P =',P,'tons')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The collapsing load, P = 1.34 tons\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg354" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The safe axial load\n", "b = 10.;## inches\n", "d = 6.;##inches\n", "l = 15.;## feet\n", "A = 11.77;## in^2\n", "I_xx = 204.80;## in^4\n", "I_yy = 21.76;## in^4\n", "f_c = 21.;## tons/in^2\n", "a = 1/7500.;\n", "n = 3.;##factor of safety\n", "k = math.sqrt(I_yy/A);## radius of gyration\n", "P = f_c*A/(1.+(a/2.)*(l*12./k)**2);## tons\n", "P_s = P/n;## safe load\n", "print'%s %.3f %s'%('The safe axial load =',P_s,'tons');\n", "\n", "##there is a minute calculation error in the answer given in text book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The safe axial load = 37.997 tons\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg355" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The internal diameter and The thickness of the metal\n", "l = 16.;## feet\n", "F = 30.;## tons\n", "n = 8.;## factor of safety\n", "k = 0.8;##k = d/D\n", "f_c = 36.;## tons/in^2\n", "a = 1/1600.;\n", "r = 0.25*math.pi*(1-k**2);##r = A/D^2\n", "P = n*F;## tons\n", "D1 = math.sqrt(P/(f_c*r*2) +math.sqrt((P/(f_c*r))*((a/4)*(l*12.)**2.)/((1+k**2.)/16.) + (P/(f_c*r*2.))**2.));## inches\n", "D = round(D1);## inches\n", "d = k*D;## inches\n", "t = (D-d)/2.;## inches\n", "print'%s %.1f %s'%('The internal diameter d =',d,'inches');\n", "print'%s %.2f %s'%('The thickness of the metal will be',t,'inches');\n", "## the answer is correct only, but it is approximated in the text book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The internal diameter d = 5.6 inches\n", "The thickness of the metal will be 0.70 inches\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The safe axial load \n", "l = 5.;## feet\n", "b = 5./2.;## inches\n", "d = 5/2.;## inches\n", "h = 1/4.;## inches\n", "n = 3.;## factor of safety\n", "A = 1.19;## in^2\n", "k = 0.49;## minimum radius of gyration\n", "f_c = 21.;## lb/in^2\n", "a = 1/7500.;\n", "P = f_c*A/(1+(a/2)*((l*12)**2)/k**2);## tons\n", "P_safe = P/n;## tons\n", "print'%s %.2f %s'%('The safe axial load =',P_safe,'tons');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The safe axial load = 4.17 tons\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The safe axial load\n", "b1 = 10.;## inches\n", "d1 = 7/2.;## inches\n", "r = 9/2.;## inches\n", "b2 = 12.;## inches\n", "d2 = 1/2.;## inches\n", "l = 20.;## feet\n", "n = 4.;## factor of safety\n", "A_s = 7.19;## in^2\n", "I_xx1 = 109.42;## in^4\n", "I_yy1 = 7.42;## in^4\n", "d = 0.97;## inches\n", "f_c = 21.;## lb/in^2\n", "a = 1/7500.;\n", "A = 2*A_s + 4*b2*d2;## in^2\n", "I_xx = 2.*I_xx1 + 2.*((1/12.)*b2*(2*d2)**3. + b2*(r+2.*d2)**2.);## in^4\n", "I_yy = 2.*(1/12.)*(2*d2)*b2**3. + 2.*(I_yy1 + A_s*(0.5*r+d)**2.);## in^4\n", "k = math.sqrt(min(I_xx,I_yy)/A);## minimum radius of gyration\n", "P = f_c*A/(1.+ a*((l*12.)**2./k**2));## tons\n", "P_safe = P/n;## tons\n", "print'%s %.1f %s'%('The safe axial load =',round(P_safe),'tons');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The safe axial load = 122.0 tons\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg357" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the safe axial load\n", "m = 4.;## no. of angles\n", "b = 7/2.;## inches\n", "d = 7/2.;## inches\n", "h = 3/8.;## inches\n", "s = 18.;## inches\n", "l = 30.;## feet\n", "n = 3.;## factor of safety\n", "A = 2.49;## in^2\n", "J = 1.;## inches\n", "I_xxs = 2.80;## in^4\n", "I_yys = I_xxs;## in^4\n", "##from the chapter V. \n", "I = 648.64;## in^4\n", "k = math.sqrt(65.2);## in^2\n", "f_c = 21.;## lb/in^2\n", "a = 1/7500.;\n", "P = m*f_c*A/(1.+a*((l*12)**2)/k**2);## tons\n", "P_safe = P/n;## tons\n", "print'%s %.1f %s'%('The safe axial load =',P_safe,'tons');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The safe axial load = 55.1 tons\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg365" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Stress intensities and Maximum possible eccentricity\n", "D = 7.;## inches\n", "t = 3/4.;## inches\n", "l = 16.;## feet\n", "P = 12.;## tons\n", "e = 3/4.;## inches\n", "E = 6000.;## tons/in^2\n", "d = D-2.*t;## inches\n", "A = 0.25*math.pi*(D**2. - d**2.);## in^2\n", "I = (math.pi/64.)*(D**4. - d**4.);## in^4\n", "p_0 = P/A;## tons/in^2\n", "Z = 2.*I/D;## in^3\n", "M = P*e/math.cos(0.25*l*12.*math.sqrt(P/(E*I)));## ton-inches\n", "p_b = M/Z;## tons/in^2\n", "p_max = p_0+p_b;## tons/in^2\n", "p_min = p_0-p_b;## tons/in^2\n", "##if tension is just on the point being induced in the section, p_b = p_0\n", "e = p_0*t*Z/M;## inches\n", "print'%s %.3f %s'%('Stress intensities, p_max =',p_max,'tons/in^2.,compressive')\n", "print'%s %.3f %s'%('p_min =',p_min,'tons/in^2., compressive');\n", "print'%s %.2f %s'%('Maximum possible eccentricity, e =',e,'inches')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stress intensities, p_max = 1.261 tons/in^2.,compressive\n", "p_min = 0.369 tons/in^2., compressive\n", "Maximum possible eccentricity, e = 1.37 inches\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg366" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The maximum possible eccentricity\n", "P = 80;## tons\n", "p_max = 5;## tons/in^2\n", "E = 13000;## tons/in^2\n", "A = 38.38;## in^2\n", "I_yy = 451.94;## in^4\n", "y_c = 6;## inches\n", "l = 20;## inches\n", "k = math.sqrt(I_yy/A);## inches\n", "Z_yy = I_yy/y_c;## in^3\n", "p_0 = P/A;## tons/in^2\n", "p_b = p_max-p_0;## tons/in^2\n", "M_max = p_b*Z_yy;## ton-inches\n", "e = M_max/(P/math.cos(0.5*l*12*math.sqrt(P/(E*I_yy))));##inches\n", "print'%s %.2f %s'%('The maximum possible eccentricity, e =',e,'inches')\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum possible eccentricity, e = 2.48 inches\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg368" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The safe load\n", "e = 7/4.;## inches\n", "E = 13000.;## tons/in^2\n", "p = 5.;## tons/in^2\n", "y_c = 6.;## inches\n", "l = 20.;## feet\n", "A = 38.38;## in^2\n", "k = math.sqrt(11.78);## inches\n", "I = 11.78;## in^4\n", "p_e = (math.pi)**2 *E*k**2 /(l*12)**2;## tons/in^2\n", "##from Perry's formula\n", "p_0 = 0.5*((p_e*1.2*e*y_c/k**2)+p_e+p)-math.sqrt((0.5*((p_e*1.2*e*y_c/k**2)+p_e+p))**2 - p_e*p);## tons/in^2\n", "P = p_0*A;## tons\n", "print'%s %.2f %s'%('The safe load, P =',P,'tons');\n", "\n", "##there is a minute calculation error in the answer given in text book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The safe load, P = 88.33 tons\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg373" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The safe load\n", "b1 = 10.;## inches\n", "d1 = 6.;## inches\n", "b2 = 12.;## inches\n", "d2 = 1/2.;## inches\n", "l = 16.;## feet\n", "A_s = 11.77;## in^2\n", "I_xxs = 204.80;## in^4\n", "I_yys = 21.76;## in^4\n", "A = A_s + 2*b2*d2;## in^2\n", "I_yy = I_yys + 2.*(1./12.)*d2*b2**3.;## in^4\n", "k = math.sqrt(I_yy/A);## inches\n", "##from the Perry-Robertson formula\n", "n = 0.003*l*12/k;\n", "p_e = 13000*math.pi**2/((l*12)/k)**2 ;## tons/in^2\n", "f = 18.;## tons/in^2\n", "x = 0.5*(f+p_e*(1.+n));\n", "p_0 = x - math.sqrt(x**2 - f*p_e);## tons/in^2\n", "P = p_0*A;## tons\n", "P_safe = P/2.36;## tons\n", "print'%s %.1f %s'%('The safe load, P =',P_safe,'tons');\n", "\n", "##there is a minute calculation error in the answer given in text book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The safe load, P = 125.3 tons\n" ] } ], "prompt_number": 13 } ], "metadata": {} } ] }