{ "metadata": { "name": "", "signature": "sha256:65543f2d4bb6fb1415ff8fc05c077edf5e538efef4c593534466949561fc7f05" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter10-Radial pressure-cylindrical and spherical shells" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg384" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The necessary thickness of metal for seamless pipe \n", "d = 2.;## feet\n", "p = 250.;## lb/in^2\n", "f = 12000.;## lb/in^2\n", "t_limit = p*d*12/(2*f) ;## inches\n", "print'%s %.2f %s'%('The necessary thickness of metal for seamless pipe is',t_limit,'inches');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The necessary thickness of metal for seamless pipe is 0.25 inches\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg384" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Maximum intensity of shear stress induced \n", "l = 8.;##feet\n", "d = 3.;## feet\n", "t = 1/2.;## inches\n", "p = 200.;## lb/in**2\n", "E = 30.*10**6.;## lb/in**2\n", "PR = 0.3;## poisson's ratio\n", "f1 = p*d*12./(2.*t);## lb/in**2\n", "f2 = p*d*12./(4.*t);## lb/in**2\n", "f_s = 0.5*(f1-f2);## lb/in**2\n", "e1 = (f1/E)-(PR*f2/E);## lb/in**2\n", "e2 = (f2/E)-(PR*f1/E);## lb/in**2\n", "del_d = e1*d*12.;## inches\n", "del_l = e2*l*12.;## inches\n", "del_V = (e2+2.*e1)*0.25*math.pi*(12*d)**2. * l*12.;## cub. inches\n", "print'%s %.d %s'%('Maximum intensity of shear stress induced =',f_s,'lb/in**2')\n", "\n", "print'%s %.6f %s'%('del_d =',del_d,'inches')\n", "print'%s %.6f %s'%('del_l = ',del_l,'inches')\n", "print'%s %.1f %s'%('del_V =',del_V,'cub. inches')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum intensity of shear stress induced = 1800 lb/in**2\n", "del_d = 0.007344 inches\n", "del_l = 0.004608 inches\n", "del_V = 44.6 cub. inches\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg385" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate Thickness of metal required\n", "d = 30.;## inches\n", "H = 300.;## feet\n", "w = 62.5;\n", "f = 2800.;\n", "##intensity of water pressur\n", "p = w*H/144.;## lb/in**2\n", "t_limit = p*d/(2*f);## inches\n", "print'%s %.4f %s'%('Thickness of metal required is',t_limit, 'inches')\n", "\n", "\n", "##the answer is correct only, but it is approximated in the text book.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thickness of metal required is 0.6975 inches\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg387" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calcualte The permissible steam pressure and circumferential stress and longitudinal sretss \n", "d = 78.;## inches\n", "t = 3/4.;## inches\n", "n1 = 70/100.;## efficiency of the longitudinal riveted joint\n", "f = 6.;## tons/in^2\n", "n2 = 60/100.;## efficiency of the circumferential riveted joint\n", "p = f*2240./(d/(2.*t*n1));##lb/in^2\n", "p = round(p-1);\n", "f1 = p*d/(2.*t);## lb/in^2\n", "f2 = p*d/(4.*t*n2);## lb/in^2\n", "print'%s %.d %s'%('The permissible steam pressure, p = ',p,'lb/in^2');\n", "print'%s %.d %s'%('The circumferential stress, f1 =',f1,'lb/in^2')\n", "print'%s %.2f %s'%('The circumferential stress, f1= ',f1/2240,'tons/in^2');\n", "print'%s %.d %s'%('The longitudinal stress, f2 =',f2,'lb/in^2') \n", "print'%s %.2f %s'%('The longitudinal sretss, f2 =',f2/2240,'lb/in^2')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The permissible steam pressure, p = 180 lb/in^2\n", "The circumferential stress, f1 = 9360 lb/in^2\n", "The circumferential stress, f1= 4.18 tons/in^2\n", "The longitudinal stress, f2 = 7800 lb/in^2\n", "The longitudinal stress, f2 = 3.48 lb/in^2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg389" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The thickness of the plate required\n", "d = 4.;## feet\n", "p = 200.;## lb/in^2\n", "f = 15000.;## lb/in^2\n", "n = 0.7;## efficiency\n", "t_limit = p*d*12/(4*f*n);## inches\n", "print'%s %.2f %s'%('The thickness of the plate required =',t_limit,'inches');\n", "\n", "##the answer is correct only, but it is approximated in the text book.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of the plate required = 0.23 inches\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg390" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The pressure exerted by fluid on the shell\n", "d = 3.;## feet\n", "t = 1/4.;## inches\n", "del_V = 9.;## cub. inches\n", "E = 30*10**6;## lb/in^2\n", "PR = 0.3;## poisson's ratio\n", "V = (math.pi/6.)*(12.*d)**3;## in^3\n", "k = del_V/V;\n", "f = k*E/(3.*(1.-PR));## lb/in^2\n", "p = 4.*f*t/(12.*d);## lb/in^2\n", "print'%s %.d %s'%('The pressure exerted by fluid on the shell, p =',p,'lb/in^2');\n", "\n", "##there is a minute calculation error in the answer given in text book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The pressure exerted by fluid on the shell, p = 146 lb/in^2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg390" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calcualte the Pipe and Steel-wire of intiually due to p and finally due to p\n", "d = 12.;## feet\n", "t = 1/2.;## inches\n", "d1 = 1/4.;## inches\n", "p = 500.;## lb/in^2\n", "E_c = 6000.;## tons/in^2\n", "PR = 0.3;## Poisson's ratio\n", "E_s = 13000.;## tons/in^2\n", "f_t = 8000.;## lb/in^2\n", "l = 8.;\n", "P_c = l*(math.pi/64.)*f_t;## lb-wt\n", "f_c = P_c/(2.*t);## lb/in^2\n", "##bursting force per inch unit length\n", "f_b = p*d;## lb-wt\n", "f_p = (f_b + (l*0.049*PR*p*d/(4.*t))*(E_s/E_c))/(1 + (l*0.049)*E_s/E_c);## lb/in^2 \n", "f_w = (f_p - PR*p*d/(4.*t))*E_s/E_c;## lb/in^2\n", "\n", "print(' Pipe Steel-wire');\n", "print'%s %.d %s'%(' Initually,',f_c,'lb/in^2.,compr.')\n", "print'%s %.d %s'%('Intiually',f_t,'lb/in^2., tensile')\n", "print'%s %.d %s'%( 'Due to p, ',f_p,'lb/in^2.,tensile.')\n", "print'%s %.d %s'%('Due to p',f_t,'lb/in^2., tensile')\n", "print'%s %.d %s'%(' Finally, ',f_p-f_c,'lb/in^2.,tensile.')\n", "print'%s %.d %s'%('Finally',f_w+f_t,'lb/in^2., tensile')\n", "\n", "##there is a calculation error in the answer given in text book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Pipe Steel-wire\n", " Initually, 3141 lb/in^2.,compr.\n", "Intiually 8000 lb/in^2., tensile\n", "Due to p, 3657 lb/in^2.,tensile.\n", "Due to p 8000 lb/in^2., tensile\n", " Finally, 516 lb/in^2.,tensile.\n", "Finally 13975 lb/in^2., tensile\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg395" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate 'The maximum intensities of circumferential stresses are\n", "d = 12.;## inches\n", "t = 3.;## inches\n", "p_x1 = 900.;## lb/in^2\n", "x1 = 0.5*d;## inches\n", "p_x2 = 0.;\n", "x2 = 0.5*d+t;## inches\n", "##from Lame's formulae\n", "b = (p_x1-p_x2)/((1/x1**2)-(1/x2**2));\n", "a = (b/x1**2)- p_x1;\n", "f_x1 = (b/x1**2)+a;## lb/in^2\n", "f_x2 = (b/x2**2)+a;## lb/in^2\n", "print'%s %.d %s'%('The maximum intensities of circumferential stresses are: f_6 =',f_x1,'lb/in^2.,tensile') \n", "print'%s %.d %s'%('The minimum intensities of circumferential stresses are: f_6f_9 =',f_x2,'lb/in^2., tensile')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum intensities of circumferential stresses are: f_6 = 2340 lb/in^2.,tensile\n", "The minimum intensities of circumferential stresses are: f_6f_9 = 1440 lb/in^2., tensile\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex9-pg396" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# calculate 'The maximum intensities of circumferential stresses are and the outer diameter\n", "d = 5.;## inches \n", "p = 3.;## tons/in^2\n", "f = 8.;## tons/in^2\n", "x = 0.5*d;## inches\n", "b = (p+f)/(2/x**2);\n", "a = f-(b/x**2); \n", "r = math.sqrt(b/a);##outer radius\n", "t = r-0.5*d;##thickness\n", "D = 2.*t+d;##outer diameter\n", "print'%s %.3f %s'%('The thickness of metal necessary, t =',t,'inches');\n", "print'%s %.1f %s'%('the outer diameter will be, D =',D,'inches');\n", "\n", "##the answer is correct, but it is approximated in the text book.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of metal necessary, t = 1.208 inches\n", "the outer diameter will be, D = 7.4 inches\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg399" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# calculate The outer radius in all four cases\n", "d = 9.;## inches\n", "p = 5000/2240.;## lb/in**2\n", "f = 8.;## tons/in**2\n", "PR = 0.3;## Poisson's ratio\n", "##(i) Maximum principal stress hypothesis:\n", "k_limit1 = math.sqrt((f + p)/(f - p));##k_limit = r1/r2\n", "r_limit1 = k_limit1*0.5*d;##inches\n", "print'%s %.3f %s'%('The outer radius in case(i), r2 =',r_limit1,'inches');\n", "##(ii) Maximum principal strain:\n", "k_limit2 = math.sqrt(((f/p - PR)+1)/(f/p - PR -1));\n", "r_limit2 = k_limit2*0.5*d;## inches\n", "print'%s %.3f %s'%(' The outer radius in case(ii), r2 =',r_limit2,'inches');\n", "##(iii) Maximum shear stress:\n", "k_limit3 = math.sqrt(f/(2*p) /((f/(2*p)) - 1));\n", "r_limit3 = k_limit3*0.5*d;## inches\n", "print'%s %.3f %s'%('The outer radius in case(iii), r2 =',r_limit3,' inches');\n", "##(iv) Maximum strain energy\n", "K1 = (f**2 /p**2)/(2*((f**2 /(2*p**2)) - (1+PR)));\n", "K2 = K1**2;\n", "K3 = ((f**2 /(2*p**2)) - (1-PR))/((f**2 /(2*p**2)) - (1+PR));\n", "k_limit4 =math. sqrt(K1+math.sqrt(K2-K3));\n", "r_limit4 = k_limit4*0.5*d;## inches\n", "print'%s %.3f %s'%(' The outer radius in case(iv), r2 =',r_limit4,' inches');\n", "\n", "##there are calculation errors in the answer given in text book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The outer radius in case(i), r2 = 5.994 inches\n", " The outer radius in case(ii), r2 = 6.163 inches\n", "The outer radius in case(iii), r2 = 6.769 inches\n", " The outer radius in case(iv), r2 = 6.249 inches\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg404" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "# calculate hoop stress at x = 3,6 inches,x = 5 inches initially on inner tube and outer tube\n", "r1 = 0.5*6.;## inches\n", "r2 = 0.5*12.;## inches\n", "r3 = 0.5*10.;## inches\n", "p = 1500.;## lb/in**2\n", "p_f = 12000.;## lb/in**2\n", "##Initially, for the inner tube\n", "b = -p/((1./r1**2.) - (1./r3**2.));\n", "a = b/r1**2.;\n", "f_3 = (b/r1**2.) +a;## lb/in**2\n", "f_5 = (b/r3**2.) +a;## lb/in**2\n", "##for the outer tube\n", "b1 = p/((1/r3**2.)-(1/r2**2.));\n", "a1 = b1/r2**2.;\n", "f1_5 = (b1/r3**2.)+a1;## lb/in**2\n", "f1_6 = (b1/r2**2.)+a1;## lb/in**2\n", "##When the fluid pressure of 12000 lb/in**2, is admitted into the compound tube\n", "B = p_f/((1./r1**2.)-(1/r2**2.));\n", "A = B/(r2**2.);\n", "f_3_ = (B/r1**2.)+A;## lb/in**2\n", "f_5_ = (B/r3**2.)+A;## lb/in**2\n", "f_6_ = (B/r2**2.)+A;## lb/in**2\n", "\n", "print('The hoop stresse are');\n", "print'%s %.1f %s %.1f %s '%(' at x = 3 inches,x = 5 inches initially on inner tube are ',-f_3,' lb/in^2.., compressive, ',-f_5,' lb/in^2..,compressive respectively');\n", "print'%s %.1f %s %.1f %s'%(' at x = 5 inches,x = 6 inches initially on outer tube are ',f1_5,' lb/in^2.., tensile, ',f1_6,' lb/in^2..,tensile respectively');\n", "print'%s %.d %s %.d %s %.d %s'%(' at x = 3 inches,x = 5 inches and x = 6 inches due to fluid pressure are ',f_3_,' lb/in^2.., tensile, ',f_5_,' lb/in^2..,tensile, and',f_6_,' lb/in^2..,tensile respectively')\n", "print'%s %.1f %s %.1f %s'%(' at x = 3 inches,x = 5 inches finally on inner tube are ',f_3_+f_3,' lb/in^2.., tensile, ',f_5_+f_5,' lb/in^2..,tensile respectively');\n", "print'%s %.d %s %.d %s'%(' at x = 5 inches,x = 6 inches finally on outer tube are',f1_5+f_5_,' lb/in^2.., tensile, ',f1_6+f_6_,' lb/in^2.., tensile respectively');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The hoop stresse are\n", " at x = 3 inches,x = 5 inches initially on inner tube are 4687.5 lb/in^2.., compressive, 3187.5 lb/in^2..,compressive respectively \n", " at x = 5 inches,x = 6 inches initially on outer tube are 8318.2 lb/in^2.., tensile, 6818.2 lb/in^2..,tensile respectively\n", " at x = 3 inches,x = 5 inches and x = 6 inches due to fluid pressure are 20000 lb/in^2.., tensile, 9760 lb/in^2..,tensile, and 8000 lb/in^2..,tensile respectively\n", " at x = 3 inches,x = 5 inches finally on inner tube are 15312.5 lb/in^2.., tensile, 6572.5 lb/in^2..,tensile respectively\n", " at x = 5 inches,x = 6 inches finally on outer tube are 18078 lb/in^2.., tensile, 14818 lb/in^2.., tensile respectively\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg407" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The minimum temperature to which outer tube should be heated before it can be slipped\n", "p = 1500.;## lb/in^2\n", "E = 30*10**6;## lb/in^2\n", "f1_5 = 8318.;## lb/in^2\n", "f2_5 = 3187.5;## lb/in^2\n", "alpha = 0.0000062;## per F\n", "r3 = 6;## inches\n", "del_r3 = r3*(f1_5+f2_5)/E;## inches\n", "t = ((f1_5+f2_5)/E)/(alpha);## inches\n", "print'%s %.2f %s'%('The minimum temperature to which outer tube should be heated before it can be slipped on, t =',t,'F');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The minimum temperature to which outer tube should be heated before it can be slipped on, t = 61.86 F\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg408" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate The hoop stresses are as under for inner tube at x=1/5 and 3 and 4.5 inches \n", "r1 = 0.5*9.;## inches\n", "r2 = 0.5*3.;## inches\n", "r3 = 0.5*6.;## inches\n", "del_r3 = 0.5*0.003;## inches\n", "E = 13000.;## tons/in^2\n", "k1 = r1/r3;\n", "k2 = r2/r3;\n", "a1 = (del_r3/r3)*E/((k1**2 +1)- (k2**2 +1)*(k1**2 -1)/(k2**2 -1));\n", "a = a1*(k1**2 -1)/(k2**2 -1);\n", "b1 = a1*r1**2;\n", "b = a*r2**2;\n", "p_ = (b/r3**2) -a;## tons/in^2\n", "## for the inner tube\n", "f_x1 = (b/r2**2) +a;## tons/in^2\n", "f_x2 = (b/r3**2) +a;## tons/in^2\n", "## for the outer tube\n", "f_x3 = (b1/r3**2) +a1;## tons/in^2\n", "f_x4 = (b1/r1**2) +a1;## tons/in^2\n", "print ('The hoop stresses are as under:');\n", "print'%s %.2f %s'%('For the inner tube, at x = 1/5 inches, f =',-f_x1,'tons/in^2., compressive')\n", "print'%s %.2f %s'%('at x = 3 inches, f =',-f_x2,'tons/in^2.,compressive')\n", "print'%s %.2f %s'%(' For the outer tube, at x = 3 inches, f =',f_x3,'tons/in^2., tensile')\n", "\n", "print'%s %.2f %s'%('at x = 4.5 inches, f =',f_x4,' tons/in^2.,tensile');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The hoop stresses are as under:\n", "For the inner tube, at x = 1/5 inches, f = 4.06 tons/in^2., compressive\n", "at x = 3 inches, f = 2.54 tons/in^2.,compressive\n", " For the outer tube, at x = 3 inches, f = 3.96 tons/in^2., tensile\n", "at x = 4.5 inches, f = 2.44 tons/in^2.,tensile\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex14-pg414" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the thickness of the shell required\n", "r1 = 0.5*5.;## inches\n", "p = 5000.;## lb/in^2\n", "f = 5.;## tons/in^2\n", "b = (f + p/2240.)/((1/r1**3) + (2/r1**3));\n", "a = f - (b/r1**3);\n", "##external diameter\n", "r = (2*b/a)**(1/3);## inches\n", "t = r - r1;## inches\n", "print'%s %.3f %s'%('The thickness of the shell required, t =',t,'inches');\n", "\n", "##the answer is approximated in the text book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The thickness of the shell required, t = -1.500 inches\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }