{ "metadata": { "name": "", "signature": "sha256:09673653cb16b83119bc0c347f996805dac297e3d0e1db4167910bd881eb2ed7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 13: Inelastic Action" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.13.1, Page No:461" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "d=150 #Depth of the web in mm\n", "wf=100 #Width of the flange in mm\n", "df=20 #Depth of the flange in mm\n", "t=20 #Thickness of the web in mm\n", "\n", "#Calculations\n", "y_bar=10**-3*(((wf*df*(d+df*0.5))+(d*t*d*0.5))/(wf*df+d*t)) #Distance of Neutral Axis in m\n", "#Simplfying the computation\n", "a=wf*df**3*12**-1\n", "b=wf*df*((d+df*0.5)-y_bar*10**3)**2\n", "c=t*d**3*12**-1\n", "f=t*d*((d*0.5)-y_bar*10**3)**2\n", "I=(a+b+c+f)*10**-12 #Moment of inertia in mm^3\n", "\n", "#Limit Moment\n", "yp=(wf*df+d*t)/(2*t) #Plastic Neutral Axis in mm\n", "Myp=I/y_bar #Yielding will start at moment without the stress term to ease computation\n", "mom=10**-9*((t*yp**2*0.5)+(wf*df*(d-yp+10))+(t*25**2*0.5)) #Sum of 1st moments\n", "Ml_Myp=mom*Myp**-1 #Ratio\n", "\n", "#Result\n", "print \"The ratio ML/Myp=\",round(Ml_Myp,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio ML/Myp= 1.765\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.13.2, Page No:467" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Variable Decleration\n", "E_st=200 #Youngs Modulus of Steel in GPa\n", "sigma_st_yp=290 #Yielding Stress in MPa\n", "E_al=70 #Youngs Modulus of Aluminium in GPa\n", "sigma_al_yp=330 #Yielding Stresss of Aluminium in MPa\n", "A_st=900 #Area of steel rod in mm^2\n", "A_al=600 #Area of Aluminium rod in mm^2\n", "L_st=350 #Length of the steel rod in mm\n", "L_al=250 #Length of the aluminium rod in mm\n", "\n", "#Calculations\n", "#Limit Load\n", "P_st=sigma_st_yp*A_st*10**-3 #Load in limiting condition in kN\n", "P_al=sigma_al_yp*A_al*10**-3 #Load in limiting condition in kN\n", "P_L=P_st+2*P_al #Total Loading in kN\n", "\n", "#Elastic Unloading\n", "#Solving for Pst and Pal using matri approach\n", "A=np.array([[1,2],[L_st*(E_st*A_st)**-1,-L_al*(E_al*A_al)**-1]])\n", "B=np.array([P_L,0])\n", "C=np.linalg.solve(A,B) #Loading in kN\n", "\n", "#Residual Stresses\n", "P_res_st=C[0]-P_st #Residual Load in kN\n", "P_res_al=C[1]-P_al #Residual Load in kN\n", "sigma_st=P_res_st/A_st #residual Stress in Steel in MPa\n", "sigma_al=P_res_al/A_al #residual Stress in Aluminium in MPa\n", "\n", "\n", "#Result\n", "print \"The Residual stresses are as follows\"\n", "print \"Sigma_st=\",round(sigma_st*10**3,1),\"MPa and sigma_al=\",round(sigma_al*10**3,1),\"MPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Residual stresses are as follows\n", "Sigma_st= 151.5 MPa and sigma_al= -113.6 MPa\n" ] } ], "prompt_number": 22 } ], "metadata": {} } ] }