{ "metadata": { "name": "", "signature": "sha256:9e6efed33049beac69942b90d39a9e8444a663ad0d711d98275d388c059ec74c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter11:Additional Beam Topics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.11.1, Page No:394" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "V=1000 #Force acting on he section in lb\n", "t=0.5 #Thickness in inches\n", "#Dimensions\n", "d=8 #Depth of the section in inches\n", "wf=12 #Width of the flange in inches\n", "wbf=8 #Width of the bottom flange in inches\n", "\n", "#Calculations\n", "y_bar=((d*t*0)+wbf*t*4+wf*t*8)/(d*t+wbf*t+wf*t) #Location of Neutral Axis in inches\n", "I=d*t*y_bar**2+t*d**3*12**-1+d*t*(d*t-y_bar)**2+wf*t*(8-y_bar)**2 #Moment of Inertia in in^4\n", "\n", "#Top Flange\n", "q1=V*t*t*wf*(8-y_bar)*I**-1 #Shear flow in lb/in\n", "#Bottom Flange\n", "q2=V*t*t*d*y_bar*I**-1 #Shear Flow in lb/in\n", "#Web\n", "qB=2*q1 #Shear Flow in lb/in\n", "qF=2*q2 #Shear Flow in lb/in\n", "\n", "#Max Shear Flow\n", "qMAX=qB+V*t*(8-y_bar)**2*0.5*I**-1 #Maximum Shear Flow in lb/in\n", "\n", "#Result\n", "print \"The Maximum Shear Flow is\",round(qMAX),\"lb/in\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Maximum Shear Flow is 133.0 lb/in\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.11.2, Page No:395" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "V=1000 #Shear Force in lb\n", "#Rest ALL DATA is similar to previous problem\n", "\n", "#Calcualtions\n", "I=t*wf**3*12**-1+t*d**3*12**-1 #Moment of Inertia\n", "\n", "#Part 1\n", "q1=V*t*t*wf*3*I**-1 #Shear Flow in lb/in\n", "q2=V*t*t*d*2*I**-1 #Shear FLow in lb/in\n", "V1=2*3**-1*q1*wf #Shear force carried in lb\n", "V2=2*3**-1*q2*d #Shear force carried in lb\n", "\n", "#Part 2\n", "e=8*V2*V**-1 #Eccentricity in inches\n", "\n", "#Result\n", "print \"The Shear Force carried by Flanges is\"\n", "print \"Top Flange=\",round(V1,1),\"lb Bottom Flange=\",round(V2,1),\"lb\"\n", "print \"The eccentricity is\",round(e,3),\"in\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Shear Force carried by Flanges is\n", "Top Flange= 771.4 lb Bottom Flange= 228.6 lb\n", "The eccentricity is 1.829 in\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.11.3, Page No:403" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import numpy as np\n", "\n", "#Variable Decleration\n", "M=32 #Moment in kN.m\n", "Iy=4.73*10**6 #Moment of inertia in y-axis in mm^4\n", "Iz=48.9*10**6 #Moment of inertia in z-axis in mm^4\n", "Sy=64.7*10**3 #Sectional Modulus in y-axis in mm^3\n", "Sz=379*10**3 #Sectional Modulus in z-axis in mm^3\n", "theta=16.2 #Angle between moment and z-axis in degrees\n", "\n", "#Calculations\n", "#Part 1\n", "alpha=np.arctan((Iz*Iy**-1)*tan(theta*pi*180**-1))*180*pi**-1 #Angle between NA and z-axis in degrees\n", "\n", "#Part 2\n", "My=-M*np.sin(theta*pi*180**-1) #Bending Moment in y in kN.m\n", "Mz=-M*np.cos(theta*pi*180**-1) #Bending Moment in z in kN.m\n", "\n", "sigma_max=My*Sy**-1+Mz*Sz**-1 #Largest Bedning Stress in MPa\n", "\n", "#Result\n", "print \"The angle between the Neutral Axis and Z-Axis is\",round(alpha,1),\"degrees\"\n", "print \"The maximum Bending Moment is\",abs(round(sigma_max*10**6)),\"MPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle between the Neutral Axis and Z-Axis is 71.6 degrees\n", "The maximum Bending Moment is 219.0 MPa\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.11.4, Page No:403" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "A=4.75 #Area in inches^2\n", "Iy_dash=6.27 #Moment of inertia in in^4\n", "Iz_dash=17.4 #Moment of inertia in in^4\n", "ry=0.87 #Radius of Gyration in inches\n", "tan_theta=0.44\n", "P=1 #Force in kips\n", "L=48 #Length in inches\n", "y_dash_B=-4.01 #Y coordinate of point B in inches\n", "z_dash_B=-0.487 #Z coordinate of point B in inches\n", "\n", "#Calcualtions\n", "theta=np.arctan(tan_theta) #Angle in radians\n", "Iy=A*ry**2 #Moment of inertia in y in in^4\n", "Iz=Iy_dash+Iz_dash-Iy #Moment of inertia in y in in^4\n", "\n", "#Part 1\n", "alpha=arctan(Iz*Iy**-1*tan_theta)*180*pi**-1 #Angle in radians\n", "beta=alpha-(theta*180*pi**-1) #Angle in degrees\n", "\n", "#Part 2\n", "M=P*L*4**-1 #Moment in kip.in\n", "My=M*np.sin(theta) #Moment in y in kip.in\n", "Mz=M*np.cos(theta) #Moment in z in kip.in\n", "\n", "y_B=y_dash_B*np.cos(theta)+z_dash_B*np.sin(theta) #Y coordinate in inches\n", "z_B=z_dash_B*np.cos(theta)-y_dash_B*np.sin(theta) #Z coordinate in inches\n", "\n", "#Maximum Bending Stress\n", "sigma_max=My*z_B*Iy**-1-Mz*y_B*Iz**-1 #Maximum Bedning Stress in ksi\n", "\n", "#Result\n", "print \"The angle of inclination of the Neutral axis to the z-axis is\",round(beta,1),\"degrees\"\n", "print \"The maximum Bedning Stress is\",round(sigma_max,2),\"ksi\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angle of inclination of the Neutral axis to the z-axis is 44.1 degrees\n", "The maximum Bedning Stress is 3.69 ksi\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.11.5, Page No:412" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "A1=4 #Area in in^2\n", "A2=6 #Area in in^2\n", "r1=7.8 #Radius in inches\n", "r2=14.8 #Radius in inches\n", "t=0.5 #Thickness in inches\n", "d=4 #Depth in inches\n", "sigma_w=18 #Maximum allowable stress in kips\n", "\n", "#Calculations\n", "A=A1+A2 #Area in in^2\n", "r_bar=(A1*(r1+t)+A2*(r2+d))*(A1+A2)**-1 #Centroidal Axis in inches\n", "#Simplfying the computation\n", "a=(r1+2*t)/r1\n", "b=r2/(r1+t*2)\n", "integral=d*math.log(a)+2*t*math.log(b) #\n", "R=A/integral #Radius of neutral Surface in inches\n", "\n", "#Maximum Stress\n", "#Answers are in variable terms hence not computable\n", "\n", "P=sigma_w/0.7847 #Maximum Allowable load in kips\n", "\n", "#Result\n", "print \"The maximum allowable load is\",round(P,1),\"kips\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum allowable load is 22.9 kips\n" ] } ], "prompt_number": 58 } ], "metadata": {} } ] }