{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9:Stress Transformation" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1 Page no 440" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "import math\n", "tou = 25\t\t #MPa, shear stress\n", "sigma1 = 50 \t\t#MPa, stress\n", "sigma2 = 80 \t\t#MPa\n", "phi = 30*(math.pi/180.0)\n", "\n", "# Calculations\n", "sigma_x1 = (sigma1*math.cos(phi)*math.cos(phi))- (tou*math.cos(phi)*math.sin(phi)) - (sigma2*math.sin(phi)*math.sin(phi))- (tou*math.sin(phi)*math.cos(phi))\n", "tou1 = (sigma1*math.cos(phi)*math.sin(phi))+ (tou*math.cos(phi)*math.cos(phi)) + (sigma2*math.sin(phi)*math.cos(phi))- (tou*math.sin(phi)*math.sin(phi))\n", "sigma_x2 = (tou*math.cos(phi)*math.sin(phi))- (sigma2*math.cos(phi)*math.cos(phi)) + (tou*math.sin(phi)*math.cos(phi))+ (sigma1*math.sin(phi)*math.sin(phi))\n", "tou2 = (tou*math.cos(phi)*math.cos(phi))+ (sigma2*math.cos(phi)*math.sin(phi)) - (tou*math.sin(phi)*math.sin(phi))+ (sigma1*math.sin(phi)*math.cos(phi))\n", "\n", "#Display\n", "print\"The normal stress component in the x diection is = \",round(sigma_x1,1),\"MPa\"\n", "print\" The shear stress component in the x diection is = \",round(tou1,1),\"MPa\"\n", "print\" The normal stress component in the y diection is = \",round(sigma_x2,1),\"MPa\"\n", "print\" The shear stress component in the y diection is = \",round(tou2,1),\"MPa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The normal stress component in the x diection is = -4.2 MPa\n", " The shear stress component in the x diection is = 68.8 MPa\n", " The normal stress component in the y diection is = -25.8 MPa\n", " The shear stress component in the y diection is = 68.8 MPa\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2 Page no 444" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "import math\n", "phi = -30*(math.pi/180) #angle\n", "theta = 60*(math.pi/180) \n", "sigma_x = -80 #MPa\n", "sigma_y = 50 #MPa\n", "tou_xy = -25 #MPa\n", "\n", "#Plane CD\n", "sigma_x1 = (sigma_x+sigma_y)/2 + ((sigma_x-sigma_y)*math.cos(2*phi))/2 + (tou_xy*math.sin(2*phi)) #Eqn 9.1\n", "tou_xy1 = ((-(sigma_x - sigma_y)*math.sin(2*phi))/2) + (tou_xy*math.cos(2*phi)) #Eqn 9.2\n", "\n", "#Plane BC\n", "sigma_x2 = (sigma_x+sigma_y)/2 + ((sigma_x-sigma_y)*math.cos(2*theta))/2 + (tou_xy*math.sin(2*theta)) #Eqn 9.1\n", "tou_xy2 = (-(sigma_x - sigma_y)*math.sin(2*theta))/2 + tou_xy*math.cos(2*theta) #Eqn 9.2\n", "\n", "#Display\n", "print'The normal stress of plane CD inclined at 30 degrees = ',round(sigma_x1,1),\"MPa\"\n", "print'The shear stress of plane CD inclined at 30 degrees = ',round(tou_xy1,1),\"MPa\"\n", "print'The normal stress of plane BC inclined at 60 degrees = ',round(sigma_x2,1),\"MPa\"\n", "print'The shear stress of plane BC inclined at 60 degrees = ',round(tou_xy2,1),\"MPa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The normal stress of plane CD inclined at 30 degrees = -25.8 MPa\n", "The shear stress of plane CD inclined at 30 degrees = -68.8 MPa\n", "The normal stress of plane BC inclined at 60 degrees = -4.2 MPa\n", "The shear stress of plane BC inclined at 60 degrees = 68.8 MPa\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3 Page no 448" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "sigma_x = -20 #MPa, stress\n", "sigma_y = 90 #MPa\n", "tou_xy = 60 #MPa\n", "\n", "#Orientation of Element\n", "import math\n", "theta_p2 = math.atan((2*tou_xy)/(sigma_x - sigma_y))\n", "theta_p2 = theta_p2/2.0\n", "theta_p1 = (180+2*theta_p2)/2.0\n", "\n", "#Principal Stresses\n", "\n", "sigma1 = ((sigma_x+sigma_y)/2.0)+(math.sqrt(((sigma_x - sigma_y)/2.0)**2 + tou_xy**2))\n", "sigma2 = ((sigma_x+sigma_y)/2.0)- math.sqrt(((sigma_x-sigma_y)/2.0)**2 + tou_xy**2)\n", "sigma_x2 = ((sigma_x+sigma_y)/2.0)+ (((sigma_x-sigma_y)/2.0)*math.cos(2*theta_p2)) + (tou_xy*math.sin(2*theta_p2))\n", "\n", "#Display\n", "print\"The first principal stress is = \",round(sigma1,1),\"MPa\"\n", "print\"The second principal stress is = \",round(sigma2,1),\"MPa\"\n", "print'The normal stress acting on the 23.7 degrees plane = ',round(sigma_x2,1),\"MPa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The first principal stress is = 116.4 MPa\n", "The second principal stress is = -46.4 MPa\n", "The normal stress acting on the 23.7 degrees plane = -43.3 MPa\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4 Page no 449" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "sigma_x = -20.0 #MPa, stress along x\n", "sigma_y = 90.0 #MPa stress along y\n", "tou_xy =60.0 #Mpa, shear stress\n", "\n", "#Calculation\n", "#Orientation of Element\n", "import math\n", "theta_s2 = math.atan(-(sigma_x - sigma_y)/(2*tou_xy))\n", "theta_s2 = theta_s2/2.0\n", "theta_s1 = math.pi + 2*theta_s2\n", "theta_s1 = theta_s1/2.0\n", "\n", "#Maximum in plane Shear Stress\n", "tou_max = (math.sqrt(((sigma_x - sigma_y)/2.0)**2 + tou_xy**2))\n", "tou_xy1 = -(sigma_x - sigma_y)*(math.sin(2*theta_s2))/2.0 + (tou_xy*math.cos(2*theta_s2))\n", "#Average Normal Stress\n", "sigma_avg = (sigma_x+sigma_y)/2\n", "\n", "#Display\n", "print\"The maximum in-plane shear stress is = \",round(tou_xy1,1),\"MPa\"\n", "print\"The average normal stress is = \",round(sigma_avg,0),\"MPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum in-plane shear stress is = 81.4 MPa\n", "The average normal stress is = 35.0 MPa\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.7 Page no 465" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "sigma_x = -12 #ksi, stress along x\n", "sigma_y = 0\n", "tou_xy = -6 #ksi, stress along xy\n", "\n", "#Calculation\n", "#Construction of the circle\n", "import math\n", "sigma_avg = (sigma_x+sigma_y)/2.0\n", "R = sqrt((-sigma_x+sigma_avg)**2 + (tou_xy)**2)\n", "#Principal Stresses\n", "sigma2 = -R+sigma_avg\n", "sigma1 = R+sigma_avg\n", "theta_p2 = math.atan((-tou_xy)/(-sigma_x+sigma_avg))\n", "theta_p2 = theta_p2/2*(180/math.pi)\n", "\n", "#Display\n", "print'The first principal stress is = ',round(sigma1,2),\"ksi\"\n", "print'The second principal stress is = ',round(sigma2,2),\"ksi\"\n", "print'The direction of the principal plane is = ',theta_p2,\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The first principal stress is = 2.49 ksi\n", "The second principal stress is = -14.49 ksi\n", "The direction of the principal plane is = 22.5 degree\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.8 Page no 466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "sigma_x = -20.0 #MPa\n", "sigma_y = 90.0 #MPa\n", "tou_xy = 60.0 #MPa\n", "\n", "#Construction of the circle\n", "import math\n", "sigma_avg = (sigma_x+sigma_y)/2\n", "R = math.sqrt(((sigma_x-sigma_avg))**2 + (tou_xy)**2)\n", "#Maximum In plane Shear Stress\n", "tou_max = R\n", "theta_s1 = math.atan(-(sigma_x - sigma_avg)/(tou_xy))\n", "theta_s1 = theta_s1/2.0*(180/math.pi)\n", "\n", "#Display\n", "print'The maximum in-plane shear stresses are = ',round(tou_max,1),\"MPa\"\n", "print'The second principal stress = ',sigma_avg,\"MPa\"\n", "print'The orientation of the element is = ',round(theta_s1,1),\"degree\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum in-plane shear stresses are = 81.4 MPa\n", "The second principal stress = 35.0 MPa\n", "The orientation of the element is = 21.3 degree\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.9 Page no 467" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate normal stress and shear stress \n", "\n", "#Given\n", "sigma_x = -8.0 #MPa\n", "sigma_y = 12.0 #MPa\n", "tou_xy = -6.0 #Mpa\n", "\n", "#Construction of the circle\n", "import math\n", "sigma_avg = (sigma_x+sigma_y)/2.0\n", "R = math.sqrt( 10**2 + tou_xy**2)\n", "#Stresses on 30 degree element\n", "phi = math.atan(6/10.0)\n", "psi = (math.pi/3.0) - phi\n", "#On face BD\n", "sigma_x1 = 2 - (R*math.cos(psi))\n", "tou_xy1 = (R*math.sin(psi))\n", "#On face DE\n", "sigma_x2 = 2 + (R*math.cos(psi))\n", "tou_xy2 = -(R*math.sin(psi))\n", "\n", "#Display\n", "print'The normal stress on plane BD inclined at 30 degrees is = ',round(sigma_x1,1),\"ksi\"\n", "print'The normal stress on plane DE inclined at 60 degrees is = ',round(sigma_x2,1),\"ksi\"\n", "print'The shear stress is = ',round(tou_xy1,1),\"ksi\"\n", "print'The shear stress is = ',round(tou_xy2,1),\"ksi\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The normal stress on plane BD inclined at 30 degrees is = -8.2 ksi\n", "The normal stress on plane DE inclined at 60 degrees is = 12.2 ksi\n", "The shear stress is = 5.7 ksi\n", "The shear stress is = -5.7 ksi\n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.10 Page no 476" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "sigma_max = 32 #MPa\n", "sigma_min = 0 #MPa\n", "sigma_int = 16 #MPa\n", "\n", "#Calculation\n", "tou_max = (sigma_max - sigma_min)/2 \n", "sigma_avg = (sigma_max + sigma_min)/2 \n", "tou_in_plane = (sigma_max - sigma_int)/2\n", "sigma_avg2 = sigma_avg + (tou_in_plane)\n", "\n", "#Display\n", "print 'The normal shears tress is', sigma_avg,\"MPa\"\n", "print'The maximum absolute shear stress = ',tou_max,\"MPa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The normal shears tress is 16 MPa\n", "The maximum absolute shear stress = 16 MPa\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.11 Page no 477" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "tou = 40 #psi\n", "sigma = -20 #psi\n", "\n", "#Calculation\n", "#Principal Stresses\n", "import math\n", "sigma_avg = sigma/2\n", "R = sqrt( (-sigma + sigma_avg)**2 + tou**2)\n", "sigma_max = sigma_avg + R \n", "sigma_min = sigma_avg - R \n", "theta = math.atan(tou/(-sigma+sigma_avg))\n", "theta = theta/2\n", "#Absolute Maximum Shear Stress\n", "tou_max = (sigma_max - sigma_min)/2\n", "sigma_avg = (sigma_max + sigma_min)/2\n", "\n", "#Display\n", "print'The prinicpal stresses at the point are ',round(sigma_max,2),\"psi and\",round(sigma_min,1),\"psi\"\n", "print'The absolute maximum shear stress at the point ',round(tou_max,1),\"psi\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The prinicpal stresses at the point are 31.23 psi and -51.2 psi\n", "The absolute maximum shear stress at the point 41.2 psi\n" ] } ], "prompt_number": 56 } ], "metadata": {} } ] }