{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1:Equilibrium of a deformable body" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.1 Page no 11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "w_varying = 270.0 #N/m, torque\n", "l_crossection = 9.0 #m , length\n", "l_cb = 6.0 #m length\n", "l_ac = 2.0 #m length\n", "\n", "#Calculation\n", "w_c = (w_varying/l_crossection) * l_cb #By proportion, load at C is found.\n", "f_resultant_c = 0.5* w_c *l_cb \n", "#Balancing forces in the x direction:\n", "n_c = 0\n", "#Balncing forces in the y direction:\n", "v_c = f_resultant_c\n", "# Balncing the moments about C:\n", "m_c = - (f_resultant_c*l_ac)\n", "\n", "#Results\n", "print\"The resultant force at C is \",f_resultant_c,\"N\"\n", "print\"The horizontal force at C is \",n_c,\"N\"\n", "print\"The vertical force at C is \",v_c,\"N\"\n", "print\"The moment about C is \",m_c,\"Nm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resultant force at C is 540.0 N\n", "The horizontal force at C is 0 N\n", "The vertical force at C is 540.0 N\n", "The moment about C is -1080.0 Nm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.2 Page no 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "f_d = 225 #N\n", "w_uniform = 800 # N/m\n", "l_ac = 0.200 #m\n", "l_cb = 0.05+0.1 #m\n", "l_bd = 0.100 #m\n", "l_bearing = 0.05 #m\n", "f_resultant = w_uniform*l_cb #120N\n", "l_f_resultant_b = (l_cb/2)+ l_bearing #0.125m\n", "l = l_ac + l_cb + l_bearing + l_bd \n", "\n", "\n", "#Calculation\n", "m_b = 0 # Net moment about B is zero for equilibrium \n", "a_y = -((f_d*l_bd) - (f_resultant*l_f_resultant_b))/ (l - l_bd) # finding the reaction force at A\n", "\n", "# Refer to the free body diagram in Fig.1-5c.\n", "f_c = 40 #N\n", "#Balancing forces in the x direction\n", "n_c = 0\n", "#Balncing forces in the y direction\n", "v_c = a_y - f_c #-18.75N - 40N-Vc = 0\n", "# Balncing the moments about C\n", "m_c = ((a_y * (l_ac + 0.05)) - f_c*(0.025) ) # Mc+40N(0.025m)+ 18.75N(0.250m) = 0\n", "\n", "\n", "# Result\n", "print'The horizontal force at C =',n_c,\"N\"\n", "print'The vertical force at C =',v_c,\"N\"\n", "print'The moment about C =',round(m_c,2),\"NM\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The horizontal force at C = 0 N\n", "The vertical force at C = -58.75 N\n", "The moment about C = -5.69 NM\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.3 Page no 13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Given\n", "l_ac = 2 #m.,length\n", "l_cb = 1 #m.\n", "l_ad = 1.5 #m.\n", "#r_a = 0.125 #m.\n", "#r_d = 0.125 #m.\n", "W = 500 # N, force\n", "g=9.81\n", "\n", "#Calculation\n", "#Balancing forces in the x direction\n", "n_c = (W*g*(l_ac+l_cb))/(3*2/5.0) # N\n", "#Balncing forces in the y direction\n", "v_c = n_c*(4/5.0) #N\n", "# Balncing the moments about C\n", "m_c = n_c*(3/5.0)-(W*g)\n", "\n", "\n", "# Result\n", "print'The horizontal force at C = ',-v_c/1000,\"KN\"\n", "print'The vertical force at C = ',-m_c/1000,\"KN\"\n", "print'The moment about C = ',-m_c/1000,\"KNm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The horizontal force at C = -9.81 KN\n", "The vertical force at C = -2.4525 KN\n", "The moment about C = -2.4525 KNm\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.4 Page no 14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Given\n", "l_ag = 2 #Length of AG is 1m.\n", "l_gd = 1 #Length of GD is 1m.\n", "l_de = 3 #Length of DE is 1m.\n", "f_a = 1500 #Force at A is 1500N.\n", "l_ec = 1.5 #Length of EC is 1m.\n", "l = l_ag +l_gd +l_de\n", "w_uniform_varying = 600 #Nm.\n", "f_ba = 7750 #N\n", "f_bc = 6200 #N\n", "f_bd = 4650 #N\n", "\n", "#Calculation\n", "w_resultant = 0.5*l_de*w_uniform_varying\n", "# calling point of action of resultant as P\n", "l_ep = (2/3.0)*l_de \n", "l_ap = l - l_ep \n", "\n", "#Free Body Diagram Using the result for Fba, the left section AG of the beam is shown in Fig 1-7d.\n", "# Equations of equilibrium\n", "#Balancing forces in the x direction\n", "n_g = -f_ba * (4/5.0) # N\n", "#Balncing forces in the y direction\n", "v_g = -f_a + f_ba*(3/5.0) #N\n", "\n", "# Balncing the moments about C\n", "m_g = (f_ba * (3/5.0)*l_ag) - (f_a * l_ag) #Nm\n", "\n", "# Result\n", "print'The horizontal force at G = ',n_g,\"lb\"\n", "print'The vertical force at G = ',v_g,\"lb\"\n", "print'The moment about G = ',m_g,\"lb-ft\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The horizontal force at G = -6200.0 lb\n", "The vertical force at G = 3150.0 lb\n", "The moment about G = 6300.0 lb-ft\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.5 Page no 15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given\n", "f_a = 50 #N, force\n", "m_a = 70 # Moment at A in Nm\n", "l_ad = 1.25 #Length of AD in m.\n", "l_bd = 0.5 #Length of BD in m.\n", "l_cb = 0.75 #Length of BC in m.\n", "w_l = 2 #Kg/m\n", "g = 9.81 #N/kg- acceleration due to gravity\n", "\n", "#Free Body Diagram \n", "import math\n", "w_bd = w_l*l_bd*g #in N. \n", "w_ad = w_l*l_ad*g\n", "# Equations of Equilibrium\n", "#Balancing forces in the x, y and z direction\n", "f_b_x = 0 # N\n", "f_b_y = 0 #N\n", "f_b_z = g + w_ad + f_a #N\n", "# Balancing Moments in the x,y and z direction\n", "m_b_x = - m_a + (f_a*l_bd) + (w_ad*l_bd) + (l_bd/2.0)*g #Nm\n", "m_b_y = - (w_ad*(l_ad/2.0)) - (f_a*l_ad) #Nm\n", "m_b_z = 0 #Nm\n", "v_b_shear = sqrt(f_b_z **2 + 0) #Shear Force in N\n", "t_b = - m_b_y #Torsional Moment in Nm\n", "m_b = math.sqrt(m_b_x **2+ 0) # Bending moment in Nm\n", "\n", "# Result\n", "print' The weight of segment BD =',w_bd,\"N\"\n", "print' The weight of segment AD =',w_ad,\"N\"\n", "print' The force at B in the Z direction =',f_b_z,\"N\"\n", "print' The moment about B in the X direction =',m_b_x,\"Nm\"\n", "print' The moment about G in the Y direction =',m_b_y,\"Nm\"\n", "print' The Shear Force at B =',v_b_shear,\"N\"\n", "print' The Torsional Moment at B =',t_b,\"Nm\"\n", "print' The Bending Moment at B =',m_b,\"Nm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The weight of segment BD = 9.81 N\n", " The weight of segment AD = 24.525 N\n", " The force at B in the Z direction = 84.335 N\n", " The moment about B in the X direction = -30.285 Nm\n", " The moment about G in the Y direction = -77.828125 Nm\n", " The Shear Force at B = 84.335 N\n", " The Torsional Moment at B = 77.828125 Nm\n", " The Bending Moment at B = 30.285 Nm\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.6 Page no 28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "netf_b = 18*(10 **3) #N Net force at B.\n", "netf_c = 8*(10**3) #N Net force at C.\n", "f_a = 12 *(10**3) #N Force at A.\n", "f_d = 22* (10**3) #N Force at D.\n", "w = 35.0 #mm Width.\n", "t = 10.0 #mm Thickness.\n", "\n", "#calculations\n", "p_bc = netf_b + f_a #N Net force in region BC.\n", "a = w*t #m**2 The area of the cross section.\n", "avg_normal_stress = p_bc/a #Average Normal Stress.\n", "\n", "# Result\n", "print'The Average Normal Stress in the bar when subjected to load = ',round(avg_normal_stress,1),\"MPa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Average Normal Stress in the bar when subjected to load = 85.7 MPa\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.7 Page no: 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given :\n", "m_lamp = 80 #Mass of lamp in Kg.\n", "d_ab = 10 # Diameter of AB in mm.\n", "d_bc = 8 # Diameter of BC in mm.\n", "ab_h = 60 *(math.pi/180.0) # In degrees - Angle made by AB with the horizontal.\n", "w = m_lamp*9.81 #N\n", "a_bc = (math.pi/4.0)*(d_bc**2) #m**2 Area of cross section of rod BC\n", "a_ab = (math.pi/4.0)*(d_ab**2) #m**2 Area of cross section of rod AB\n", "\n", "\n", "#calculation\n", "import math # Equations of equilibrium: Solving equilibrium equations simultaneously ,\n", "f_bc=395\n", "f_ab=f_bc*(4/5.0)/(math.cos(60*3.14/180.0))\n", "avg_normal_stress_a = f_ab / a_ab #Mpa Average Normal Stress in AB\n", "avg_normal_stress_c = f_bc/ a_bc# Mpa Average Normal Stress in BC\n", "\n", "# Displaying results:\n", "print\"The Average Normal Stress in AB when subjected to load = MPa\",round(avg_normal_stress_a,2),\"MPa\"\n", "print\"The Average Normal Stress in BC when subjected to load = MPa\",round(avg_normal_stress_c,2),\"MPa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Average Normal Stress in AB when subjected to load = MPa 8.04 MPa\n", "The Average Normal Stress in BC when subjected to load = MPa 7.86 MPa\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.8 Page no 30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given\n", "h_above_ab = 2.75 #ft , height\n", "h_below_ab = 0.2 \n", "d_a = 0.75 #diameter ft \n", "d_b = 0.1 \n", "sp_w = 490 \n", "\n", "# Equation of Equilibrium\n", "import math\n", "a = math.pi* (d_a**2) # Area of cross section in m**2\n", "p = sp_w * h_above_ab * a\n", "avg_comp_stress = p/a # The average compressive stress in kN/m**2\n", "\n", "#Display\n", "print'The average compressive stress = ',avg_comp_stress,\"lb/ft**2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The average compressive stress = 1347.5 lb/ft**2\n" ] } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.9 Page no 31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Determine Distance of force from AB\n", "\n", "#Given \n", "f = 3000 #N Force acting at distance x from AB.\n", "l_ac = 200 #Length of AC in mm.\n", "a_ab = 400 #Cross sectional area of AB in mm**2.\n", "a_c = 650 # area of C in mm**2.\n", "\n", "#Calculation\n", "#Equations are\n", "#Fab+Fc=3000\n", "#-3000*x+Fc*200=0\n", "Fc=1857\n", "Fab=3000-Fc\n", "x=Fc*200/3000\n", "\n", "#Display\n", "print'Distance of force from AB = ',x,\"mm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Distance of force from AB = 123 mm\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.10 Page no 35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "af =30\t\t #kN Axial force along centroidal axis\n", "t1 = 2 \t\t#m thickness of square cross section\n", "t2=4\n", "#Internal loading\n", "import math\n", "Fb=af*t1/((t1+t2)*(4/5.0))\n", "Ax=Fb*(3/5.0)\n", "Ay=af-(Fb*(4/5.0))\n", "Fa=math.sqrt(Ax**2+Ay**2)\n", "Va=Fa/t1\n", "Vb=Fb\n", "Aa=(math.pi/4.0)*((t1/100.0)**2)\n", "Ab=(math.pi/4.0)*(((t1+t2)/200.0)**2)\n", "Ta=Va/Aa\n", "Tb=Vb/Ab\n", "\n", "#Display\n", "print'The Average Normal Stress for section b-b = ',round(Ta/1000,0),\"Mpa\"\n", "print'The Average Shear Stress for section b-b = ',round(Tb/1000,1),\"Mpa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Average Normal Stress for section b-b = 34.0 Mpa\n", "The Average Shear Stress for section b-b = 17.7 Mpa\n" ] } ], "prompt_number": 68 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.11 Page no 36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given \n", "f = 6 #kN\n", "d_rod = 0.1 #Diameter of steel rod in mm.\n", "l_bc = 0.125 #Length of side bc in mm.\n", "l_ac=0.15\n", "#Calculation\n", "F=f/2.0\n", "#Appling Force balance\n", "Va=F\n", "Vb=F\n", "a_rod=d_rod*l_ac\n", "a_strut=l_bc*l_ac\n", "#Average shear stress\n", "avg_shear_rod = F/a_rod #for rod in Mpa\n", "avg_shear_strut = (f/2)/a_strut #for strut\n", "\n", "#Display\n", "print'The average shear stress for the rod = ',avg_shear_rod,\"Kpa\"\n", "print'The average shear stress for the strut = ',avg_shear_strut,\"Kpa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The average shear stress for the rod = 200.0 Kpa\n", "The average shear stress for the strut = 160.0 Kpa\n" ] } ], "prompt_number": 74 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.12 Page no 37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given\n", "l_bc = 1 \t#Length of BC in inc.\n", "l_db = 3 \t# in.\n", "l_ed = 2 \t# in.\n", "l_ab = 1.5 \t# in.\n", "f_diagonal = 600 \t#lb\n", "\n", "#Calculation\n", "a1 = l_bc*l_ab \t\t#Area of face AB in mm**2.\n", "a2 = l_ab*l_ed \t#mm**2.\n", "a3 = l_db*l_ab \t# mm**2.\n", "#Balancing forces along the x- direction.\n", "f_ab = f_diagonal*(3/5.0) #Force on segment AB in N\n", "V = f_ab \n", "\n", "#Balancing forces along the Y direction.\n", "f_bc = f_diagonal*(4/5.0) #Force on segment BC in N.\n", "avg_comp_ab = f_ab/a1 # N/mm**2\n", "avg_comp_bc = f_bc/a2 # N/mm**2\n", "avg_shear = f_ab/a3 # N/mm**2\n", "\n", "#Display\n", "print a1\n", "print'The average compressive stress along AB = ',avg_comp_ab,\"psi\"\n", "print'The average compressive stress along BC = ',avg_comp_bc,\"psi\"\n", "print'The average shear stress along EDB = ',avg_shear,\"psi\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1.5\n", "The average compressive stress along AB = 240.0 psi\n", "The average compressive stress along BC = 160.0 psi\n", "The average shear stress along EDB = 80.0 psi\n" ] } ], "prompt_number": 81 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.13 Page no 49" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given\n", "shear_allow = 3 \t#ksi, stress\n", "tensile_allow = 5 \t#ksi, stress\n", "l_C1 = 3\t\t #in\n", "l_C2 = 2 \t\t #in\n", "l_ac=8 #inch\n", "Tauallow=8 #ksi\n", "\n", "#Calculation\n", "import math\n", "Fab=(tensile_allow*(3/5.0)*(l_C1+l_C2)+shear_allow*l_C1)/(l_ac)\n", "Cx=-shear_allow+tensile_allow*(4/5.0)\n", "Cy=tensile_allow*(3/5.0)+l_C1\n", "Fc=math.sqrt(Cx**2+Cy**2)\n", "A=(Fc/2.0)/Tauallow\n", "d=2*math.sqrt(A/math.pi)\n", "\n", "#Result\n", "print\" The diameter of rod is = \",round(d,3),\"inch\"\n", "print\"Wse a pin of diameter =\",3/4.0,\"inch\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The diameter of rod is = 0.696 inch\n", "Wse a pin of diameter = 0.75 inch\n" ] } ], "prompt_number": 87 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.14 Page no 50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "P= 20.0\t\t #kN, force\n", "d_hole = 40.0 \t #mm\n", "normal_allow = 60.0 #MPa, pressure\n", "shear_allow = 35.0 #MPa, pressure\n", "\n", "\n", "#Diameter of Rod\n", "import math\n", "area1 = (P*10**3)/(normal_allow*10**6) #Area in m**2\n", "d = ((math.sqrt((4*area1)/math.pi))*1000) # Area = (math.pi\\4)d**2\n", "#Thickness of disc\n", "V = P\n", "area2 = (V*10**3)/(shear_allow*10**6) #Area in m**2\n", "thickness = (area2*10**6)/(d_hole*math.pi)# A = pi*d*t\n", " \n", "\n", "#Result\n", "print\"The diameter of rode = \",round(d,2),\"mm\"\n", "print\"The thickness of disc = \",round(thickness,2),\"mm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diameter of rode = 20.6 mm\n", "The thickness of disc = 4.55 mm\n" ] } ], "prompt_number": 93 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.15 Page no 51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "import math\n", "bearing_allow = 75.0\t #MPa, pressure\n", "tensile_allow = 55.0 \t#MPa, pressure\n", "d_shaft = 60.0\t\t #mm\n", "r_shaft = d_shaft/2.0 \t#mm\n", "area_shaft = math.pi*(r_shaft**2) #Area = pi*r**2\n", "d_collar = 80 #mm\n", "thick_collar = 20 #mm\n", "\n", "#Calculation\n", "r_collar = d_collar/2.0 #mm\n", "area_collar = math.pi*(r_collar**2) #Area = pi*r**2\n", "#Normal Stress\n", "P1 = (tensile_allow* area_shaft)/3.0 #Tensile stress = 3P/A.\n", "P1_kN = P1/1000.0\n", "#Bearing Stress\n", "bearing_area = area_collar-area_shaft \n", "P2 = (bearing_allow*bearing_area)/3 \n", "P2_kN= P2/1000.0\n", "\n", "#Result\n", "print\"The load calculated by Normal Stress \",round(P1_kN,1),\"kN\"\n", "print\"The load calculated by Bearing Stress \",round(P2_kN,0),\"kN\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The load calculated by Normal Stress 51.8 kN\n", "The load calculated by Bearing Stress 55.0 kN\n" ] } ], "prompt_number": 96 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1.16 Page no 52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given\n", "d_ac= 20.0 #mm\n", "area_al = 1800.0 #mm**2, area\n", "d_pins = 18.0 #mm\n", "st_fail_stress = 680.0 #MPa, pressure\n", "al_fail_stress = 70.0 #MPa, pressure\n", "shear_fail_pin = 900.0 #MPa\n", "fos = 2.0 #Factor of safety\n", "l_ab = 2.0 #m\n", "l_ap = 0.75 #m\n", "\n", "#Calculation\n", "import math\n", "area_pins = math.pi*(d_pins/2.0)**2\n", "area_ac = math.pi*(d_ac/2.0)**2 #Area = (math.pi\\4)d**2\n", "st_allow= st_fail_stress /fos #MPa\n", "al_allow = al_fail_stress/fos #MPa\n", "pin_allow_shear = shear_fail_pin/fos #MPa\n", "\n", "#Rod AC\n", "f_ac = (st_allow*area_ac)/1000.0\n", "P1 = ((f_ac*l_ab)/(l_ab-l_ap))\n", "\n", "#Block B\n", "f_b =(al_allow*area_al)/1000.0\n", "P2 = ((f_b*l_ab)/l_ap)\n", "\n", "#Pin A or C\n", "V = (pin_allow_shear*area_pins)/1000.0\n", "P3 = (V*l_ab)/(l_ab-l_ap)\n", "\n", "#Result\n", "print\"The load allowed on rod AC \",round(P1,0),\"kN\"\n", "print\"The load allowed on block B \",P2,\"kN\"\n", "print\"The load allowed on pins A or C \",round(P3,0),\"kN\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The load allowed on rod AC 171.0 kN\n", "The load allowed on block B 168.0 kN\n", "The load allowed on pins A or C 183.0 kN\n" ] } ], "prompt_number": 102 } ], "metadata": {} } ] }