{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 : Behaviour of Ideal and Viscous Fluids" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.2.1 page no : 190" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#initialisation of variables\n", "\n", "v= 5.*10**-6 \t\t\t#gmsec/m**2\n", "g= 32.2 \t\t\t#ft/sec**2\n", "g1= 981. \t\t\t#gm/cm**2\n", "\t\t\t\n", "#CALCULATIONS\n", "v1= v*2.2*30.5**2/1000.\n", "v2= v1*g\n", "v3= v*g1*100\n", "\t\t\t\n", "#RESULTS\n", "print 'viscosity = %.2e lbf sec/ft**2 '%(v1)\n", "print 'viscosity = %.2e lb/ft sec '%(v2)\n", "print 'viscosity = %.3f centi-poise '%(v3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "viscosity = 1.02e-05 lbf sec/ft**2 \n", "viscosity = 3.29e-04 lb/ft sec \n", "viscosity = 0.490 centi-poise \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.3.1 page no : 192" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "\n", "v= 3.732*10**-7 \t\t\t#slug/ft sec\n", "y= 0.\n", "\t\t\t\n", "#CALCULATIONS\n", "vbyy= 40000.*(1.-50*y)\n", "q= v*vbyy\n", "\t\t\t\n", "#RESULTS\n", "print ' viscous shear stress= %.4f lbf/ft**2 '%(q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " viscous shear stress= 0.0149 lbf/ft**2 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.3.2 page no : 193" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "\n", "T= 2.95 \t\t\t#lbf ft\n", "y= 0.025 \t\t\t#in\n", "d= 3. \t\t\t #in\n", "w= 450. \t\t\t#r.p.m\n", "g= 32.2 \t\t\t#ft/sec**2\n", "R = 1.5\n", "\t\t\t\n", "#CALCULATIONS\n", "A = math.pi*d*(2./3.)\n", "u = (T*y*144*60*32.2)/(A*R**2*w*2*math.pi)\t\t\n", "\n", "#RESULTS\n", "print ' coefficient of viscocity of oil= %.3f lb/ft sec '%(u)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " coefficient of viscocity of oil= 0.513 lb/ft sec \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.3.3 page no : 194" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "\n", "v= 0.02 \t\t\t#lb/ft sec\n", "L= 5. \t\t\t#in\n", "D= 2.5 \t\t\t#in\n", "M= 26. \t\t\t#lbf in\n", "w= 1200. \t\t\t#rev/min\n", "g= 32.2 \t\t\t#ft/sec**2\n", "\t\t\t\n", "#CALCULATIONS\n", "C= math.pi*v*w*2*math.pi*D**3*L/(2*M*g*60*144.)\n", "\t\t\t\n", "#RESULTS\n", "print ' coefficient= %.4f in '%(C)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " coefficient= 0.0026 in \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.3.4 page no : 195" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "\n", "g= 32.2 \t\t\t#ft/sec**2\n", "l= 2.54 \t\t\t#cm\n", "g= 32.2 \t\t\t#ft/sec**2\n", "v= 3.22 \t\t\t#centi-poise\n", "f= 0.01\n", "p= 1.74 \t\t\t#lbf/in**2\n", "w= 100. \t\t\t#rev\n", "\t\t\t\n", "#CALCULATIONS\n", "V= v*l/(453.6*g*12)\n", "R= f*p*60/(math.pi*2*math.pi*w*V)\n", "\n", "\t\t\t\n", "#RESULTS\n", "print ' relevant ratio of diameter to clearance= %.1f '%(R)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " relevant ratio of diameter to clearance= 11.3 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.4.1 page no : 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "g= 981. \t\t\t#cm/sec**2\n", "d= 0.1 \t\t\t#mm\n", "v= 35. \t\t\t#centi-stokes\n", "d1= 10. \t\t\t#mm\n", "d2= 1. \t\t\t#mm\n", "\t\t\t\n", "#CALCULATIONS\n", "u= g*d**2.*100/(18*v*d1**2)\n", "ub= (d2/d)**2*u\n", "\t\t\t\n", "#RESULTS\n", "print ' rate for diameter 0.1 mm= %.4f cm/sec'%(u) \n", "print ' rate for diameter 1 mm= %.2f cm/sec'%(ub) \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " rate for diameter 0.1 mm= 0.0156 cm/sec\n", " rate for diameter 1 mm= 1.56 cm/sec\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.5.1 page no : 201" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math\n", "a= 0.25 \t\t\t#ft\n", "v= 1.2 \t\t\t#poises\n", "u= 10. \t\t\t#ft/sec\n", "g= 32.2 \t\t\t#ft/sec**2\n", "s= 0.9\n", "d= 6. \t\t\t#in\n", "\t\t\t\n", "#CALCULATIONS\n", "q= -2.*u*v*30.5/(a*454*g)\n", "Q= math.pi*u*(d/24)**2/2\n", "R= 2.5*30.5**2/(v)\n", "\t\t\n", "#RESULTS\n", "print ' quantity flow = %.2f ft**3/sec'%(q) \n", "print ' shear stress in the oil = %.2f lbf/ft**2'%(Q) \n", "print ' Reynolds number = %.f '%(R)\n", "print 'Which is less than 2300 .Hence flow is laminar.'\n", "# Note : Answer in book is wrong for R. Please check it manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " quantity flow = -0.20 ft**3/sec\n", " shear stress in the oil = 0.98 lbf/ft**2\n", " Reynolds number = 1938 \n", "Which is less than 2300 .Hence flow is laminar.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.5.2 page no : 202" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math\n", "\n", "s= 0.9 #relative density\n", "v= 5. \t\t\t#ft/sec\n", "l= 10. \t\t\t#ft\n", "di= 0.5 \t\t\t#in\n", "n= 100.\n", "u= 0.002 \t\t\t#lbfsec/ft**2\n", "w= 62.3 \t\t\t#lbf/ft**3\n", "g= 32.2 \t\t\t#ft/sec**2\n", "\t\t\t\n", "#CALCULATIONS\n", "dp= 8.*u*v*l/(di/2)**2\n", "hf= dp*144./(s*w)\n", "hk= v**2/(2.*g)\n", "ht=hf+hk\n", "P= s*w*n*v*math.pi*ht*di**2/(144.*4*550)\n", "\n", "#RESULTS\n", "print ' horse-power required = %.1f h.p'%(P)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " horse-power required = 2.3 h.p\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.6.2 pageno : 206" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "\n", "W= 50. \t\t\t#tonf\n", "u= 0.1 \t\t\t#lb/ft sec\n", "d= 8. \t\t\t#in\n", "g= 32.2 \t\t\t#ft/sec**2\n", "r= 0.01\n", "\t\t\t\n", "#CALCULATIONS\n", "P = (4*W**2)/(3*math.pi*u) * ((1./800)**3)*(12./8)*(g/550)*2240**2\n", "Q= 4*W*2240*g*12*(r/d)**3/(3*math.pi*u*(d/12))\n", "\t\t\t\n", "#RESULTS\n", "print ' power required = %.2f'%P\n", "print ' rate = %.3f in/sec'%(Q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " power required = 9.13\n", " rate = 0.538 in/sec\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }