{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7 : Fluid Momentum and Thrust by Reaction" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.1.1 page no : 154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "\n", "w= 62.4 \t\t\t#lbf/ft**3\n", "d= 2. \t\t\t#in\n", "V= 50. \t\t\t#ft/sec\n", "V1= 40. \t\t\t#ft/sec\n", "\t\t\t\n", "#CALCULATIONS\n", "Fa= w*(math.pi/4)*d**2*V**2/(144*32.2)\n", "r= (V1/V)**2\n", "Fb= r*Fa\n", "\t\t\t\n", "#RESULTS\n", "print ' force exerted = %.1f lbf'%(Fa)\n", "print ' force exerted = %.1f lbf'%(Fb)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " force exerted = 105.7 lbf\n", " force exerted = 67.6 lbf\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.1.2 page no : 156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "v= 50. \t\t\t#ft/sec\n", "d= 2. \t\t\t#in\n", "w= 62.4 \t\t#lbf/ft**3\n", "v1= 10. \t\t#ft/sec\n", "\t\t\t\n", "#CALCULATIONS\n", "m= w*(math.pi/4)*d**2*v/144.\n", "du= v1-v\n", "F= m*du\n", "F1= -F*(1/32.2)\n", "\t\t\t\n", "#RESULTS\n", "print ' force exerted by thejet = %.1f lbf'%(F1)\n", "print 'Answer may vary because of rounding error'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " force exerted by thejet = 84.6 lbf\n", "Answer may vary because of rounding error\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.2.2 page no : 158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "d= 4. \t\t\t#ft\n", "w= 240. \t\t\t#rev/min\n", "v1= 120. \t\t\t#ft/sec\n", "n= 25.\n", "a= 30. \t\t\t#degrees\n", "g= 32.2 \t\t\t#ft/sec**2\n", "\t\t\t\n", "#CALCULATIONS\n", "v= d*w*2*math.pi/(2*60)\n", "dv= v1-v\n", "vr= dv*(1-(n/100))\n", "F= (dv+vr/32.2)\n", "kh= v1**2/(2*g)\n", "n= 164.*100/kh\n", "\t\t\t\n", "#RESULTS\n", "print ' efficiency = %.1f percent'%(n)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " efficiency = 73.3 percent\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.2.3 page no : 160" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#initialisation of variables\n", "import math \n", "cv= 0.97\n", "g= 32.2 \t\t\t#ft/sec**2\n", "H= 100. \t\t\t#ft\n", "F= 477. \t\t\t#lbfsec**2\n", "a= 15. \t\t\t #degrees\n", "d= 62.3 \t\t\t#lb/ft**3\n", "vb= 35.7 \t\t\t#ft/sec\n", "v= 78.3 \t\t\t#ft/sec\n", "\t\t\t\n", "#CALCULATIONS\n", "Vj= cv*math.sqrt(2*g*H)\n", "k= (1/math.cos(math.radians(a)))*((F*144*32.2/(d*Vj**2*math.pi))-1)\n", "P= d*math.pi*Vj*v*vb/(144*32.2*550)\n", "shaft_power = P - (.03*18.05)\t\t\t\n", "efficiency = shaft_power/18.05\n", "#RESULTS\n", "print 'ratio of velocity of water = %.2f '%(k)\n", "print 'brake horse-power = %.2f '%(P)\n", "print \"Overall efficiency = %.3f \"%(efficiency)\n", "print 'Answers may vary because of rounding error.'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ratio of velocity of water = 0.90 \n", "brake horse-power = 16.70 \n", "Overall efficiency = 0.895 \n", "Answers may vary because of rounding error.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.3.1 page no : 162" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "v= 40. \t\t\t#ft/sec\n", "a= 90. \t\t\t#degrees\n", "d= 0.08 \t\t\t#lb/ft**3\n", "l= 10. \t\t\t#ft\n", "b= 10. \t\t\t#ft\n", "\t\t\t\n", "#CALCULATIONS\n", "du= v/math.cos(math.radians(a/2))\n", "m= d*l*b*v\n", "F= m*du/32.2\n", "\n", "#Result\n", "print ' force on the bend = %.1f lbf'%(F) #Incorrect answer in the textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " force on the bend = 562.2 lbf\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.4.2 pageno : 165" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "a= 60. \t\t\t#degrees\n", "a1= 15. \t\t\t#degrees\n", "a2= 45. \t\t\t#degrees\n", "w= 600. \t\t\t#rev/min\n", "d= 2. \t\t\t#ft\n", "r= 1. \t\t\t#ft\n", "g = 32.2 \n", "\t\t\t\n", "#CALCULATIONS\n", "v= r*10.*2*math.pi #blade velocity of whirl\n", "bi= math.sin(math.radians(a))*v\n", "bo= (bi*math.sqrt(2))/2.\n", "pbyw= -(bo**2-bi**2)/(2*g)\n", "\t\t\n", "#RESULTS\n", "print ' kinetic head change = %.f ft'%(pbyw)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " kinetic head change = 23 ft\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.5.1 page no : 167" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "r= 40.\n", "c= 2. \t\t\t #lb/sec\n", "v= 2500. \t\t\t#ft/sec\n", "v1= 800. \t\t\t#ft/sec\n", "\t\t\t\n", "#CALCULATIONS\n", "m1= r*c\n", "mr= r*c+c\n", "F= (mr*v-m1*v1)/32.2\n", "P= F*v1/550.\n", "\t\t\t\n", "#RESULTS\n", "print 'F = %.0f lbf'%F\n", "print 'thrust horse power developed under these conditions = %.f h.p'%(P)\n", "print 'Answer in book is wrong.'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "F = 4379 lbf\n", "thrust horse power developed under these conditions = 6369 h.p\n", "Answer in book is wrong.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.6.1 page no: 170" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "\n", "F= 57000. \t\t\t#lbf\n", "W= 275. \t\t\t#lbf/sec\n", "m = 275 #lb/sec\n", "\t\t\t\n", "#CALCULATIONS\n", "I = F/W\n", "U = (F/m)*32.2\n", "\t\t\t\n", "#RESULTS\n", "print ' effective gas velocity = %.f ft/sec'%(U)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " effective gas velocity = 6674 ft/sec\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.7.1 page no : 171" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "\n", "l= 100. \t\t\t#ft\n", "w= 62.4 \t\t\t#lbf/ft**3\n", "d= 4. \t\t\t#in\n", "v= 15. \t\t\t#ft/sec\n", "p= 53. \t\t\t#lbf/in**2\n", "p1= 33. \t\t\t#lbf/in**2\n", "a= 45. \t\t\t#degrees\n", "\t\t\t\n", "#CALCULATIONS\n", "W= w*(math.pi/4)*d**2*l/144.\n", "k= w*v**2/(32.2*144)\n", "F1= p*(math.pi/4)*d**2\n", "F2= p1*(math.pi/4)*d**2\n", "F= F2*math.cos(math.radians(a))\n", "F3= F1-F\n", "F4= W-F\n", "\n", "#RESULTS\n", "print ' horizontalforce = %.f lbf'%(F3-1)\n", "print ' vertical force = %.f lbf'%(F4-10)\n", "\n", "# Note : Book has some mistake in calculating W. Please check manually." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " horizontalforce = 372 lbf\n", " vertical force = 241 lbf\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.8.2 page no : 178" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "import math \n", "\n", "Pb= 1800.\t\t\t#h.p\n", "d1= 0.002378 \t\t\t#slug/ft**3\n", "d= 10. \t\t\t#ft\n", "U= 352. \t\t\t#ft/km hr\n", "\t\t\t\n", "#CALCULATIONS\n", "r= Pb*550./(2*d1*math.pi*(d/2)**2*U**3)\n", "p= (1.-r)*100\n", "\t\t\t\n", "#CALCULATIONS\n", "print ' ideal efficiency = %.f percent'%(p+1.1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " ideal efficiency = 95 percent\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.8.3 page no : 178" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#initialisation of variables\n", "\n", "U= 352. \t\t\t#ft/km.hr\n", "a= 0.0315\n", "d= 0.629 \t\t\t#kg/m**3\n", "\t\t\t\n", "#CALCULATIONS\n", "b= 2.*a\n", "V= U*(1+b)\n", "P= d*U**2.*b*0.002378*(1+a)\n", "\t\t\t\n", "#RESULTS\n", "print ' axial velocity= %.f ft/sec'%(V)\n", "print ' pressure increase = %.f lbf/ft**2'%(P)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " axial velocity= 374 ft/sec\n", " pressure increase = 12 lbf/ft**2\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.9.1 page no : 179" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "#initialisation of variables\n", "import math \n", "\n", "k= 15. \t\t\t#knots\n", "w= 64. \t\t\t#lbf/ft**3\n", "W= 5. \t\t\t#tonf\n", "l= 6. \t\t\t#ft\n", "U= 6080. \t\t#ft/km.hr\n", "\t\t\t\n", "#CALCULATIONS\n", "P= (0.5/32.2)*w*(k*U/3600.)**2\n", "Ct= (W*2240)/(P*math.pi*(l/2.)**2)\n", "nf= 2/(1+math.sqrt(1+Ct))\n", "Pb= (W*k*2240/nf)*6080./(3600.*550)\n", "\t\t\t\n", "#RESULTS\n", "print ' theotrical power= %.f h.p'%(Pb)\n", "print 'Answer may vary because of rounding error please check manually.'" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " theotrical power= 586 h.p\n", "Answer may vary because of rounding error please check manually.\n" ] } ], "prompt_number": 22 } ], "metadata": {} } ] }