{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3 : The Measurement of Fluid Pressure"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.1.1 page no : 52"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#initialisation of variables\n",
      "\n",
      "p= 14.7 \t\t#lbf/in**2\n",
      "p1= 5. \t\t\t#lbf/in**2\n",
      "w= 62.3 \t\t#lbf/ft**3\n",
      "h= 30. \t\t\t#ft\n",
      "\t\t\t\n",
      "#CALCULATIONS\n",
      "hmax= (p-p1)*144/w\n",
      "hmin= h-hmax\n",
      "\t\t\t\n",
      "#RESULTS\n",
      "print  ' Minimum depth of the water= %.1f ft'%(hmin)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " Minimum depth of the water= 7.6 ft\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.2.1 page no : 56"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#initialisation of variables\n",
      "import math \n",
      "T= 20. \t\t\t#C\n",
      "h= 1. \t\t\t#cm\n",
      "dw= 1. \t\t\t#gf/cm**3\n",
      "dm= 13.6 \t\t\t#gf/cm**3\n",
      "g= 981. \t\t\t#dyne\n",
      "Tw= 74. \t\t\t#dyne/cm\n",
      "Tm= 465. \t\t\t#dyne/cm\n",
      "\t\t\t\n",
      "#CALCULATIONS\n",
      "hw= (4*Tw)/(dw*g*(h/10))\n",
      "hm= (4*Tm*math.cos(math.radians(130)))/(dm*g*(h/10))\n",
      "\t\t\t\n",
      "#RESULTS\n",
      "print  'capillary rise of water= %.1f cm'%(hw)\n",
      "print  'capillary rise of mercury= %.2f cm'%(hm)\n",
      "print 'In a tube 1 cm bore, which is about the size used in gauges in mant engineering \\n \\\n",
      "recorders, the figures would be %.0f mm and %.2f mm'%(hw,hm)\n",
      "# answers may vary because of rounding error and inbuilt function."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "capillary rise of water= 3.0 cm\n",
        "capillary rise of mercury= -0.90 cm\n",
        "In a tube 1 cm bore, which is about the size used in gauges in mant engineering \n",
        " recorders, the figures would be 3 mm and -0.90 mm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.4.1 page no : 62"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#initialisation of variables\n",
      "\n",
      "w1= 0.81\n",
      "w2= 0.80\n",
      "r= 40.\n",
      "\t\t\t\n",
      "#CALCULATIONS\n",
      "l1 = 2*w1/(w1-w2)\n",
      "a1= (2*w1)/(w1-w2+(1/r)*(w1+w2))\n",
      "\t\t\t\n",
      "#RESULTS\n",
      "print  'limiting ratio= %.1f '%(l1)\n",
      "print 'Actual ratio = %.1f'%a1"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "limiting ratio= 162.0 \n",
        "Actual ratio = 32.2\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.4.2 page no : 62"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "#initialisation of variables\n",
      "\n",
      "dh= 1. \t\t\t#in\n",
      "a= 1/40.        # area\n",
      "A = 1           # in.\n",
      "s= 0.9          # gravity\n",
      "w= 62.3 \t\t#lb/ft**3\n",
      "#A = 1728\n",
      "\t\t\t\n",
      "#CALCULATIONS\n",
      "sensitivity = (A/(w*((A+a)-s*(A-a))))*1728\n",
      "dpbyw= dh*((1+a)-s*(1-a))\n",
      "dp= w*dpbyw/1728.\n",
      "\t\t\t\n",
      "#RESULTS\n",
      "print \"Sensitivity = %.2f in/lbf\"%sensitivity\n",
      "print  'pressure difference = %.2e lbf/in**2 '%(dp)\n",
      "\n",
      "\n",
      "#Answer in the textbook is wrong\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Sensitivity = 188.05 in/lbf\n",
        "pressure difference = 5.32e-03 lbf/in**2 \n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.5.1 pageno : 65"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#initialisation of variables\n",
      "\n",
      "x= 1. \t\t\t#in\n",
      "y= 10. \t\t\t#in\n",
      "r= 40.\n",
      "\t\t\t\n",
      "#CALCULATIONS\n",
      "dbyh= 1/((x/y)+(1/r))\n",
      "\n",
      "#RESULTS\n",
      "print  'magnification factor= %.f '%(dbyh)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "magnification factor= 8 \n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3.5.2 page no : 65"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "%matplotlib inline\n",
      "\n",
      "from matplotlib.pyplot import *\n",
      "\n",
      "#initialisation of variables\n",
      "\n",
      "p= 0.005 \t\t\t#lbf/in**2\n",
      "w= 62.4 \t\t\t#lbf/ft**3\n",
      "h= 1. \t\t\t#in\n",
      "pressure = [0,9.04,19.08,27.16,36.16,45.20,54.24]\n",
      "scale = [1.2,3.1,5.1,6.3,8.6,10.9,13.1]\n",
      "\n",
      "#CALCULATIONS\n",
      "p= w*h/1728.\n",
      "plot(scale,pressure)\n",
      "plot(scale,pressure,'go-')\n",
      "xlabel(\"Scale reading\")\n",
      "ylabel(\"Additional pressure\")\n",
      "suptitle(\"Calibration of micromanometer\")\n",
      "axis([0,20,0,60])\n",
      "\t\t\t\n",
      "#RESULTS\n",
      "print  ' pressure difference = %.4f lbf/in**2 '%(p)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        " pressure difference = 0.0361 lbf/in**2 \n"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stderr",
       "text": [
        "WARNING: pylab import has clobbered these variables: ['draw_if_interactive']\n",
        "`%pylab --no-import-all` prevents importing * from pylab and numpy\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEfCAYAAACnNXoXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPsCjlklsOmBqGAQoMDKDkkg7qgDeXXHK5\nuZBLliaZaYp6KyxLvKYmSmbmgpr7LdFIBU1Q3FlSMxVFSFPAZURkh+H5/eHPuXEBWZzhDMzn/Xr5\nejFn5pzzOcM4X87znPM8MiGEABERmSQzqQMQEZF0WASIiEwYiwARkQljESAiMmEsAkREJoxFgIjI\nhLEImJC0tDSMHDkS7du3h6enJ/r164crV648cZ2GDRsCAG7duoVhw4YBADZs2AB/f/+nyvL1118j\nNzdX97hfv37IzMx8qm0+yZ07d+Dl5QUPDw8cO3asyuv//fhNyYMHD7Bq1SqpY5ABsQiYCCEEBg8e\njF69euHq1auIjY3FwoULkZ6e/sT1ZDIZAKBVq1bYuXNniWUV7e9Jt6AsX74cOTk5usfh4eFo3Lhx\nZQ6lWg4dOgSFQoG4uDh069atyuv//fgro7i4uMr7MEb379/HN998U6V1Kvrdk3FhETARhw8fRr16\n9TBp0iTdMoVCge7duyM7Oxt9+vSBh4cHFAoF9uzZU2r9lJQUuLi4AHj0n/zGjRvw9vaGvb09Pvvs\nM91rHBwc4OfnBxcXF9y4cQNTpkxBp06d4OzsjMDAQABAcHAwbt26BW9vb/Tu3RsAYGtrC41GAwBY\nunQpXFxc4OLiguXLl+u23aFDB0yaNAnOzs7w9fVFXl5emTl79eoFV1dX9OnTBzdu3MBvv/2G2bNn\nIywsDEqlstR6tra2mDt3LpRKJTw9PREfHw8fHx+0b98eq1evLnX8Wq0WM2fOhIuLC1xdXRESEqLb\nTkBAADw8PLBz505s3boVCoUCLi4uCAgI0O2vYcOGmDVrFpydnaFWq3Hy5En07NkTdnZ22Lt3r25/\nPXr0gIeHBzw8PHDixAkAQFRUFFQqFYYNG4YOHTpg9OjRuu0eOnQI7u7uUCgUmDBhAgoKCip9fACw\nePFidO7cGa6urrrfVUBAAJKSkqBUKjF79uxyX/e/v/u//vqr1O+GjJQgk7B8+XIxffr0Mp8rKioS\nmZmZQggh7ty5I9q3b697rmHDhkIIIZKTk4Wzs7MQQoj169cLGxsbodFoRG5urnB2dhaxsbEiOTlZ\nmJmZiVOnTunW12g0un2oVCpx/vx5IYQQtra24t69e7rXPX4cGxsrXFxcRE5OjsjKyhJOTk4iISFB\nJCcnCwsLC3H27FkhhBDDhw8XmzdvLnUs/fv3Fxs3bhRCCLFu3ToxaNAgIYQQGzZsEP7+/mUev62t\nrfj222+FEEJMnz5duLi4iKysLHHnzh0hl8tLHf8333wjhg0bJrRabYljtLW1FYsXLxZCCHHz5k3R\ntm1bcffuXVFUVCR69eoldu/eLYQQQiaTif379wshhBg8eLBQq9WiqKhInD17Vri5uQkhhMjJyRF5\neXlCCCESExOFp6enEEKIw4cPi+eee07cvHlTFBcXiy5duohjx46J3Nxc0aZNG3HlyhUhhBBjx44V\nX3/9daWP78CBA2LSpElCCCG0Wq3o37+/OHLkiEhJSdEd95NeV9bvnmoHngmYiCc14RQXF2POnDlw\ndXWFWq3GrVu3cPv27Sduz8fHB02bNoWVlRWGDBmCmJgYyGQyvPjii+jcubPuddu3b4eHhwfc3d1x\n4cIF/PHHH+VuUwiBmJgYDBkyBM888wwaNGiAIUOG4OjRo5DJZGjXrh0UCgUAwMPDAykpKaW2cfLk\nSbz55psAgNGjRyMmJka3bfGEJoqBAwcCAFxcXNClSxc0aNAALVq0QP369Uv1VRw6dAjvvPMOzMwe\n/fdp2rSp7rkRI0YAAM6cOQNvb280b94c5ubmGDVqFI4cOQIAqFevHnx9fXX78/b2hrm5OZydnXXH\nVFBQgIkTJ0KhUGD48OG4ePGibh+dO3dGq1atIJPJ4ObmhuTkZFy+fBnt2rVD+/btAQB+fn66/VV0\nfA8ePEBERAQiIiKgVCrh4eGBy5cv4+rVq6Xes/JeB6DU755qBwupA1DNcHJywq5du8p87ocffsDd\nu3cRHx8Pc3NztGvXrsymlvIIIXRfiA0aNNAtT05OxpIlSxAbG4vnnnsO48aNq3C7MpmsxBePEEJX\nwOrXr69bbm5uXqJj+X/zVNXjbZuZmaFevXq65WZmZigqKqr0Ph4f/5OOw9LSssT2H+/v7/tatmwZ\nbGxssGnTJmi1WlhZWZXKCjx6H4qKikoV+b/vr7LHN2fOnBLNhQDKLLTlve7vv3uqPXgmYCJ69eqF\n/Px8rFmzRrfs3LlziImJQWZmJlq2bAlzc3McPnwYf/75Z4Xbi4yMxP3795Gbm4uwsDB069at1Bdj\nZmYmGjRogMaNGyM9PR379u3TPdeoUaNSf2HLZDK8+uqr2L17N3Jzc5GdnY3du3fj1VdfrfQXe9eu\nXbFt2zYAj4pbjx49KrXeY5XZj1qtxurVq6HVagE86jz9X506dUJ0dDTu3bsHrVaLbdu2oWfPnpXO\nkZmZCWtrawDAxo0bdfsqi0wmg4ODA1JSUpCUlAQA2LRpU5n7K+v4ZDIZfH19sW7dOmRnZwMAbt68\niTt37qBRo0Z4+PCh7rXlvY5qLxYBE/LTTz/h4MGDaN++PZydnTFv3jzY2Nhg1KhRiI2NhUKhwKZN\nm9ChQwfdOn//a/LxzzKZDJ07d8bQoUPh6uqKN954A+7u7qVe7+rqCqVSCUdHR4waNQrdu3fXPTdp\n0iT07dtX1zH8mFKpxFtvvYXOnTvjlVdewdtvvw1XV9dS2y7rMQCsWLEC69evh6urK3744Qddx7JM\nJiu3Sex/j7GsY/77zxMnTkTbtm2hUCjg5uaGrVu3ltqmjY0NgoKC4O3tDTc3N3h6emLAgAEVHsfj\nn6dMmYLQ0FC4ubnh8uXLukt1yzvu+vXrY/369Rg2bBgUCgUsLCzw7rvvVvr41Go13nzzTXTp0gUK\nhQLDhg1DVlYWmjdvjm7dusHFxQWzZ88u9brhw4cjKyur3Fxk/GSiOufORERUJ/BMgIjIhLEIEBGZ\nMBYBIiITxiJARGTCWASIiEwYiwARkQljESAiMmEsAkREJoxFgIjIhLEIEBGZMIMXgYyMDLzxxhvo\n0KEDOnbsiFOnTkGj0UCtVsPe3h4+Pj7IyMgwdAwiIiqDwYvAtGnT8Nprr+HixYs4d+4cHB0dERQU\nBLVajcTERPTu3RtBQUGGjkFERGUw6AByDx48gFKpxLVr10osd3R0RHR0NORyOdLS0qBSqXDp0iVD\nxSAionIY9EwgOTkZzz//PMaNGwd3d3e8/fbbyM7ORnp6OuRyOQBALpdXONk5EREZhkFnFisqKkJ8\nfDxWrlyJTp064YMPPijV9FPeOO8cm5yIqHqq0sBj0DOB1q1bo3Xr1ujUqRMA4I033kB8fDysra2R\nlpYGAEhNTUXLli3LXP/xvLD893T/Pv30U8kz1KV/fD/5fhrzv6oyaBGwtrZGmzZtkJiYCAA4ePAg\nnJycMGDAAISGhgIAQkNDMWjQIEPGICKichh8ovkVK1Zg1KhRKCgogJ2dHdavXw+tVovhw4dj7dq1\nsLW1xY4dOwwdg4iIymDwIuDq6oozZ86UWn7w4EFD75r+n0qlkjpCncL3U7/4fkrLaOcYlslk1Wrf\nIiIyZVX97uSwEUREJoxFgIjIhLEIEBGZMBYBIiITxiJARGTCWASIiEwYiwARkQljESAiMmEsAkRE\nJoxFgIjIhLEIEBGZMBYBIiITZvBRRInIOIVHhiN4SzDyRT7qy+rj/TffRz91P6ljUQ1jESAyQeGR\n4ZgWMg1JyiTdsqSQRz+zEJgWDiVNZIJ8x/kiwjai9PLrvti/dr8EiUhfOJQ0EVUoX+SXuTxPm1fD\nSUhqLAJEJijlVkaZy63MrWo4CUmNRYDIxPxzySr82fwG5Mdbl1huF28H/5H+EqUiqbBPgMhEFBcL\n9P78M8RkbkLk2Ahk376IFdtWIE+bBytzK/iP9GencB1Q1e9OFgEiE1BQqIXHv95HUsFxnH5/P5zb\nyaWORAZS1e9OXiJKVMdlZufD+eOxeFh8G5fmRqFty+ekjkRGhH0CRHXYrXsP0W5efxSJQiQv2McC\nQKWwCBDVURev38HLC3qhZb12SPn3TjRpyCt/qDQWAaI66NiFP+G6vDvcG/fFhaDVqGdpLnUkMlIs\nAkR1zE/HfkfPDd0x0Hoqjs7/HGZmMqkjkRFjESCqQ1aFH8PQPb0xuf2/sesjXvNPFePVQUR1ROAP\n4fjs3Dh87r4J80b4Sh2HagmDFwFbW1s0btwY5ubmsLS0xOnTp6HRaDBixAj8+eefsLW1xY4dO9Ck\nSRNDRyGqsyaFbMTa67Pwfa+9GO/rJXUcqkUM3hwkk8kQFRWFhIQEnD59GgAQFBQEtVqNxMRE9O7d\nG0FBQYaOQVRnDVy4BOtSPkbYkMMsAFRlBr9juF27doiNjUXz5s11yxwdHREdHQ25XI60tDSoVCpc\nunSpZDDeMUz0RMXFAq98PBtnc3/GkbcPwKtDG6kjkREwuqGkZTIZ+vTpA09PT6xZswYAkJ6eDrn8\n0W3rcrkc6enpho5BVKfkFRTBYdZ4XMw+it8/PMoCQNVm8D6BY8eOwcbGBnfu3IFarYajo2OJ52Uy\nGWSysi9hCwwM1P2sUqmgUqkMmJSodrj7IAfOgSOhRSGSAg+iZZMGUkciCUVFRSEqKqra69foAHLz\n589Hw4YNsWbNGkRFRcHa2hqpqanw9vZmcxBRJSSn3ofbooFoZv4iLnyxHs9aWUodiYyMUTUH5eTk\n4OHDhwCA7OxsREREwMXFBQMHDkRoaCgAIDQ0FIMGDTJkDKI6If7KLXRc3BN2z3jiyr83sgCQXhj0\nTCA5ORmDBw8GABQVFWHUqFGYM2cONBoNhg8fjuvXr5d7iSjPBIj+60BsIvpv80XvJu/gl7mzeRcw\nlYvzCRDVMZsPxcHvQH+MfuFzhE6bKHUcMnJG1RxERE9nyY+/YmzEPzDLaRULABkEh40gMlIz1u7C\nssQpWNZ1J6a93lPqOFRHsQgQGaF/LlmFHekLsLVfBEb0dJM6DtVhLAJERqTEZPBjjqCXm53UkaiO\nYxEgMhJ/nww+zj8GipespY5EJoBFgMgIPJ4MPrM4nZPBU43i1UFEEvv7ZPApC/azAFCNYhEgkhAn\ngyepsQgQSeTxZPDKRr6cDJ4kwyJAJIHHk8EPkL+HmM8WcBgIkgw7holqQHhkOIK3BCNf5OP2vVxc\nbHQZU3p8g5B335Q6Gpk4FgEiAwuPDMe0kGlIUiY9WtAOaHbEBq/ZsQOYpMfmICIDC94S/N8C8P80\nPVKxYtsKiRIR/ReLAJGB5Yv8MpfnafNqOAlRaSwCRAaUlVuA01cSy3zOypyXg5L0WASIDOT67Qdo\nO+cfqP9CG9jGvlTiObt4O/iP9JcoGdF/sWOYyABOXbyBnmteg72VCrE/fI3IqP1YsW0F8rR5sDK3\ngv9Uf/RT95M6JhFnFiPSt61RCRgdPgD9m3+In2ZN5z0AVKM4sxiRhD7fug+j9vvgA8evERbwIQsA\nGT02BxHpydiv1+CH1I8R0mM3JvfrJnUcokphESB6SsXFAq8G/guns7fjl38ega+nvdSRiCqNRYDo\nKWRm58P1kwm4W3wV56afQIe2z0sdiahKKtUnkJOTg8uXLxs6C1Gtkpx6Hy/O64v84hwkB/7KAkC1\nUoVFYM+ePVAqlfD19QUAJCQkYODAgQYPRmTMjl34E46Lu6HdM25I+fdOtHjuWakjEVVLhUUgMDAQ\np06dQtOmTQEASqUS165dM3gwImO1+VAceoR2RT/rdxC/cBnnAaBarcIiYGlpiSZNmpRcyYxXlpJp\nmr/lF4yN7IuZHVfix1nTpI5D9NQq7Bh2cnLCDz/8gKKiIly5cgXBwcHo2rVrTWQjMiqjlq3GttRA\nfNdrLyb2fUXqOER6UeEdwzk5OViwYAEiIiIAAL6+vvj4449hZWXYwa94xzAZiyJtMV4NnIe4nP9g\n3+hf0FvZXupIROWq6nfnE4tAUVER1Go1Dh8+rJdwVcEiQMYgMzsfLp+8hfva6zgzIwwObVpIHYno\nifQ6bISFhQXMzMyQkZFR7UBarRZKpRIDBgwAAGg0GqjVatjb28PHx+eptk1kSEm3NGgzTw2tKETK\nZwdZAKhOqrCHt0GDBnBxccH48ePh7+8Pf39/vP/++5XewfLly9GxY0fIZI/GUAkKCoJarUZiYiJ6\n9+6NoKCg6qcnMpAj55LRcUlX2DfojJTFO9Cs8TNSRyIyiAr7BDZs2FB6JZkMfn5+FW78r7/+wltv\nvYV58+Zh6dKl2Lt3LxwdHREdHQ25XI60tDSoVCpcunSpzH2wOYikEBp5BuMjX8eQ5+di50dTpY5D\nVCVV/e6s8Oqgt956q9phpk+fjsWLFyMzM1O3LD09HXK5HAAgl8uRnp5e7vqBgYG6n1UqFVQqVbWz\nEFXGvzbtwZcXJmCuy1osGMObIsn4RUVFISoqqtrrV3gm0K5du9IryWQV3jD2888/Y9++fQgJCUFU\nVBSWLFmCvXv3omnTprh//77udc2aNYNGoylzHzwToJo04qsQ7Lr9Bb7vsxvjfDpLHYeoWvR+JnDm\nzBndz3l5edi1axfu3btX4YaPHz+OPXv24JdffkFeXh4yMzMxZswYXTOQtbU1UlNT0bJly0qHJTKE\nIm0xun4yG2fz9uLQ2BioXF+qeCWiOqJaM4u5u7sjPj6+0q+Pjo7GV199hb1792LWrFlo3rw5Zs+e\njaCgIGRkZJTZOcwzAaoJGVl5cPlkLDKLUxE/Kwx2rZpJHYnoqej9TCAuLk53ZU9xcTFiY2Oh1Wqr\nFQwAAgICMHz4cKxduxa2trbYsWNHlbdFpA9X/roHj69eRxOz1vhzQSSaNDTsDZBExqjCMwGVSqX7\nArewsICtrS1mzpwJBwcHwwbjmQAZ0K+/JaHvptegfGYQjs1fCAtzjodFdYNe7xiWEosAGcq6A6fw\n9qFBGC7/BFtnTJY6DpFe6X2i+eXLlyMzMxNCCEyYMAHu7u44cODAU4UkksrcjWGYeLg/5inWsAAQ\noRJFYO3atWjcuDEiIiKg0WiwceNGBAQE1EQ2Ir0a+u9gLPp9Mjb02YfPRveXOg6RUaiwY/jxaUV4\neDjGjBkDZ2dng4ci0qcibTG8Pp6J3/P2I3r8cXR3tpU6EpHRqLAIeHh4wMfHB9euXcPChQuRmZnJ\nSWWo1tBk5sIlcDSyi+/h0uxjaGfTVOpIREalwo7h4uJiJCQkwM7ODk2aNMG9e/dw8+ZNKBQKwwZj\nxzBVQ3hkOIK3BCNf5KMoX4a4ojTI27rj3Gfr0LhBfanjERmc3u8TOHHiBFxdXdGwYUNs2rQJ8fHx\n+OCDD54qJJEhhEeGY1rINCQpk3TL6h9qguCJI1kAiMpRYbvOu+++iwYNGuDs2bNYunQp2rdvj7Fj\nx9ZENqIqCd4SXKIAAEB+7wx8syNEokRExq/CImBhYQGZTIbdu3fjvffew3vvvYeHDx/WRDaiKskX\n+WUuz9Pm1XASotqjwuagRo0a4csvv8TmzZtx9OhRaLVaFBYW1kQ2okorLhb4IyUVKD3oLazMORwE\nUXkqPBPYvn07rKyssG7dOlhbW+PmzZv46KOPaiIbUaUUFGrhNtcf91vm44VTL5Z4zi7eDv4j/SVK\nRmT8KjVsREpKCq5evYo+ffogJycHRUVFaNy4sWGD8eogqoTbGdlQzP8nCkUuEubuwvmzMVixbQXy\ntHmwMreC/0h/9FP3kzomUY3R+9hB3333HdasWQONRoOkpCQkJiZi8uTJOHTo0FOHfWIwFgGqwLlr\naeiyoj9ambvg7ILv8KyVpdSRiCSn97GDQkJCEBMTo/vL397eHrdv365+QiI9CDt+Ae7fvIJXmr6O\ny/9exwJAVE0VFoH69eujfv3/XmNdVFSkG1qaSApLfzqMwWG98LbdAhz65GOYmfHzSFRdFRaBnj17\n4osvvkBOTg4iIyMxbNgwDBgwoCayEZXy7jebMPPkSHz1yjasmjxa6jhEtV6lho34/vvvERERAQDw\n9fXFxIkTDX42wD4B+rviYoE+n3+Oow/X48c3wjHglY5SRyIySnrtGC4qKoKzszMuXbqkl3BVwSJA\nj2XlFkD58Tu4pT2PE/4/Q/GStdSRiIyWXjuGLSws4ODggD///POpgxFVx/XbD/DinH54qL2H5E+j\nWQCI9KzCO4Y1Gg2cnJzQuXNnNGjQAMCjSrNnzx6DhyPTduKP6/D+/jXYW3kj9vOvUc/SXOpIRHVO\nhUXg888/BwBdH4AQglcHkcFtjUrA6PAB6N/yQ/w0azqvACIykErdMZyamorTp0/DzMwMnTp1grW1\n4U/J2SdguuZv+QXzz76FGQ6rsHj8UKnjENUqer9Z7Pvvv4eXlxd+/PFH7Nq1C15eXli7du1ThSQq\nz5tLv8Vnv03At6owFgCiGlDhmYC9vT1OnDiB5s2bAwDu3buHLl26IDEx0bDBeCZgUoq0xej26Rwk\n5O7G/jG/oJebndSRiGolvc8s1qJFCzRs2FD3uGHDhmjRokX10hGVISMrD4pP/JBRfBMXZh7Hy62b\nSx2JyGRUeCYwZswY/P7773j99dcBAGFhYVAoFFAoFJDJZPjwww8NE4xnAibhyl/34PHV62hi9gLO\nfRaKJg059j/R09D7mYCdnR3s7Ox0VwS9/vrrkMlkyMrKqn5KIgCHEq7iH5tfg3vDIYiZ/yUszCvs\noiIiPavU1UFS4JlA3fbdvhOYfHgIRtoE4ofp70gdh6jO0PvVQdWVl5cHLy8vuLm5oWPHjpgzZw6A\nRzefqdVq2Nvbw8fHBxkZGYaKQEbqo3X/wbtRr+MTt7UsAEQSM+iZQE5ODp599lkUFRWhe/fu+Oqr\nr7Bnzx60aNECs2bNwqJFi3D//n0EBQWVDsYzgTqnuFhg0KKlCNcsw+Z+e/FPlVLqSER1jtGcCQDA\ns88+CwAoKCiAVqtF06ZNsWfPHvj5+QEA/Pz8sHv3bkNGICORV1AEt7n+iLizATHjjrMAEBmJcjuG\n/f3Ln5xbJpMhODi4wo0XFxfD3d0dSUlJmDx5MpycnJCeng65XA4AkMvlSE9PL3f9wMBA3c8qlQoq\nlarCfZLxuZ2RDZf5I1Ek8pA4NwZtWz4ndSSiOiMqKgpRUVHVXr/c5qANGzaUGC+oxEoyme6v+cp4\n8OABfH19sXDhQgwZMgT379/XPdesWTNoNJrSwdgcVCdwHmCimqW3S0TfeustfeQBADz33HPo168f\n4uLiIJfLkZaWBmtra6SmpqJly5Z62w8Zl7DjFzD0x37o2XQCIv/1Lw4CR2SEKuwTuH37NmbOnInX\nXnsN3t7e8Pb2Rq9evSrc8N27d3VX/uTm5iIyMhJKpRIDBw5EaGgoACA0NBSDBg16ykMgY8R5gIlq\nhwpvFhs1ahRGjBiBn3/+GatXr8aGDRvw/PPPV7jh1NRU+Pn5obi4GMXFxRgzZgx69+4NpVKJ4cOH\nY+3atbC1tcWOHTv0ciBkPCaFbMT31z/CV69sw4eDvaWOQ0RPUOElou7u7oiPj4dCocC5c+cAAJ6e\nnoiNjTVsMPYJ1DqcB5hIenofNqJevXoAAGtra/z8889o1apViY5dIqDkPMBx/ic4DSRRLVFhEZg3\nbx4yMjKwZMkS+Pv7IzMzE8uWLauJbFRLXL/9AMov34Cl7BkkfxqNlk0aSB2JiCqJYwdRlYVHhiN4\nSzDyRT5ycwTikYIOLw3kPMBERkDvzUG3b9/GmjVrkJKSgqKiIt1O1q1bV/2UVGuFR4ZjWsg0JCmT\ndMue/bU5vpjgywJAVAtVeCbQpUsX9OjRAx4eHjAze3RFqUwmw9Chhp36j2cCxsl3nC8ibCNKL7/u\ni/1r90uQiIj+Tu9nArm5uVi0aNFThaK6I1/kl7k8T5tXw0mISB8qvFmsf//+CA8Pr4ksVAvUl9Uv\nc7mVOWcEI6qNKiwCX3/9NQYMGAArKys0atQIjRo1QuPGjWsiGxkhBwcfILJk279dvB38R5Y/4CAR\nGS9eHUSVpsnMhc18JV4zG4xcTQLytHmwMreC/0h/9FP3kzoeEaHq352VKgJhYWE4cuQIZDIZevbs\niQEDBjxVyEoFYxEwOp3nfYS03Ou4vnS71FGIqBx67xgOCAjAmTNnMGrUKAghEBwcjOPHj2PhwoVP\nFZRql9W/HEdc4Wb8/sE5qaMQkR5VeCbg4uKC3377Debmj9qBtVot3NzccP78ecMG45mA0dBk5sJ6\nvhumOX2JxeMNe2kwET0dvU8vKZPJSkwGn5GRoZtshkyDT9C/YC2ULABEdVCFzUFz5syBu7u7bmrH\n6OjoMieGp7ppVfgxJBRtwR/TDXvmR0TSqFTH8K1bt3DmzBnIZDJ07twZ1taGHyGSzUHSu/sgB60+\nc8N0l0VY9NZgqeMQUSXo7eqgixcvokOHDoiLiyux0cdNQe7u7nqI+4RgLAKS85j7Ie7lpyFlyRap\noxBRJent6qClS5dizZo1mDFjRpl9AIcPH65eQqoVvvk5Br8VbcMlNgMR1WkVNgfl5eXBysqqwmV6\nD8YzAck8agZyxQzFYiz04xzQRLWJ3q8O6tq1a6WWUd3hEzQPrdCZBYDIBJTbHJSamopbt24hJycH\n8fHxEEJAJpMhMzMTOTk5NZmRatDKvUdxVrsDl6bzpjAiU1BuEThw4ABCQ0Nx8+ZNzJgxQ7e8UaNG\n+PLLL2skHNWsuw9y8GHUeMx2/QYvt24udRwiqgEV9gn85z//MfgEMmVhn0DNU875ABkFd5G8ZLPU\nUYiomvR2ddCmTZswZswYpKSkYOnSpbrlj5uFPvzww6dLSkZl5d6jOKfdicQZvBqIyJSUWwQet/s/\nfPiwxCWij4sA1R23M7IxPWoc5ritgl2rZlLHIaIaxPkECK4B7+Nh4X1cW7JJ6ihE9JT01hzk7//f\nmaLKumMEIiLtAAAUZUlEQVQ4ODi4uhnJiCwPi8bvxf9hMxCRiSr3PgEPDw94eHggPz8f8fHxsLe3\nx8svv4yEhAQUFBTUZEYykNsZ2Zh5dDzmunzLZiAiE1Vhc5CXlxdiYmJgaWkJACgsLET37t1x6tQp\nwwZjc5DBKQL8kV2UiaSvQqWOQkR6ovc7hjMyMpCZmal7/PDhwxLzCzzJjRs34O3tDScnJzg7O+ua\nkDQaDdRqNezt7eHj41Pp7ZH+fL07Che0P+HgjK+ljkJEEqqwCAQEBMDd3R1+fn7w8/ODu7s75syZ\nU6mNW1paYtmyZbhw4QJOnjyJkJAQXLx4EUFBQVCr1UhMTETv3r05P0ENS9Nk4aOYCfjYbTXa2TSV\nOg4RSahSVwelpqbi1KlTkMlk8PLyqvZ8AoMGDcLUqVMxdepUREdHQy6XIy0tDSqVCpcuXSoZjM1B\nBqMImIqcoixc/WqD1FGISM/0dnXQ43kEHmvTpg2ARxPM3Lp1q8rzCaSkpCAhIQFeXl5IT0+HXC4H\nAMjlcqSnp5e5TmBgoO5nlUqlm92Mqm/pT4fxhzYMSR/xaiCiuiAqKgpRUVHVXr/cMwGVSgWZTIbc\n3FzExcVBoVAAAM6dOwdPT0+cOHGi0jvJyspCz5498fHHH2PQoEFo2rQp7t+/r3u+WbNm0Gg0JYPx\nTEBvwiPDEbwlGA8Lc3AiORZvqmbjhy8CpY5FRAagt47hqKgoHD58GK1atUJ8fDzi4uIQFxeHhIQE\ntGrVqtI7KCwsxNChQzFmzBgMGvRoaOLHzUDAo6amli1bVnp7VDXhkeGYFjINEbYROPFyDOCTh1MX\nNiM8MlzqaERkBCrsGL506RJcXFx0j52dnXHx4sVKbVwIgQkTJqBjx4744IMPdMsHDhyI0NBHlyWG\nhobqigPpX/CWYCQpk0osS1ImYcW2FRIlIiJjUm6fwGMKhQITJ07E6NGjIYTAli1b4OrqWqmNHzt2\nDJs3b4ZCoYBSqQQALFy4EAEBARg+fDjWrl0LW1tb7Nix4+mOgsqVL/LLXJ6nzavhJERkjCq8Oig3\nNxerVq3C0aNHAQA9evTA5MmTOb1kLdHpjR6IdTlaarnvdV/sX7tfgkREZEhV/e6s8gByR48exbZt\n2xASElLlcFXBIvD0LqTchutsNzyTVoSsXnd0y+3i7bB86nL0U/eTMB0RGYLeLhH9u/j4eGzduhU7\nd+6Era2tJJPMUNWkabLgtbw/ujpOxOyJXlixbQXytHmwMreC/1R/FgAiAvCEM4HLly9j69at2L59\nO55//nkMGzYMixcvxvXr12smGM8Eqi0nrxAvzhmIZhYv4OKiNTAz4/wPRKZCb81BZmZm6N+/P1au\nXIm2bdsCANq1a4fk5GT9JK0oGItAtRQXC9jPGoeH2rv4c9FuWNWr1MkeEdURertP4Mcff8QzzzyD\nHj164N1338WhQ4f4pVwLdP90HtK1l3D+0+0sAERUoQo7hrOyshAWFoatW7fi8OHDGDt2LAYPHgwf\nHx/DBuOZQJUNW7wSYWkrcP6DY3Bo00LqOEQkAYNeHaTRaLBr1y5s27YNv/76a7UCVhaLQNXMWLsL\nX1/6AIfHHEUPRTup4xCRRAx+iWhNYRGovOVh0Zh+fBi2vhaBET3dpI5DRBLS+6QyZNx+jDmP6ceH\nY1HnrSwARFRlLAK12Ik/rmN42GuYarccHw3tLXUcIqqF2BxUSyXd0qDjV93xj5ZvY3fAdKnjEJGR\nYJ+ACdBk5sL2EzUcGryCM198JXUcIjIiLAJ1XEGhFraz3kA9s2dx9d+bYGHOFj0i+i+DjB1ExqG4\nWMBt3nvIF1lIXLCdBYCInhqLQC2iXrAAKYWnkTgvCg2fqSd1HCKqA1gEagm/5d/jSOZ6xPkfR+vn\nG0sdh4jqCBaBWuCTzT9j882P8cvIaChespY6DhHVISwCRu77/Sex4PdxWNsnHL6e9lLHIaI6hj2L\nRmz/mct45/AgfKoIxTifzlLHIaI6iEXASMVfuYUB2/tiXJsgfPrma1LHIaI6ivcJGKHrtx/AYWFP\ndG82DJEfz5M6DhHVIrxZrJbLzM6H7bzX8EJ9R5xduJJTQxJRlbAI1GJF2mK89NGb0KIQyYt2oJ6l\nudSRiKiW4R3DtVRxsUDnf83Ag+Jb+HNBBAsAEdUIFgEj8fqiJfgjPxIXZx9Fk4ZWUschIhPBImAE\npnz7A/ZpgnHs7WNoZ9NU6jhEZEJYBCQWtDMS3yZ/iJ8G/wqvDm2kjkNEJoZFQEI//BqPubGjENz9\nP3i9q5PUcYjIBBn0ZrHx48dDLpfDxcVFt0yj0UCtVsPe3h4+Pj7IyMgwZASjFXX2Gsbu74+Zjt9i\n6oBXpY5DRCbKoEVg3Lhx2L9/f4llQUFBUKvVSExMRO/evREUFGTICEbpQspt+Gz0xXD5x/j3uCFS\nxyEiE2bw+wRSUlIwYMAAnD9/HgDg6OiI6OhoyOVypKWlQaVS4dKlS6WD1dH7BNI0WWj/eS+4NfJB\nzGcLpI5DRHVMVb87a3zsoPT0dMjlcgCAXC5Henp6TUeQTE5eIRSfD0crCxccCfxc6jhERNJ2DMtk\nMshk5Q+LEBgYqPtZpVJBpVIZPpSehUeGI3hLMPJFPk5fuQLLF1rht41hHA6CiPQiKioKUVFR1V5f\nkuagqKgoWFtbIzU1Fd7e3nW2OSg8MhzTQqYhSZmkW2Yb+xJWvh+Mfup+EiYjorrK6JuDBg4ciNDQ\nUABAaGgoBg0aVNMRakzwluASBQAAUjyvYcW2FRIlIiIqyaBF4J///Ce6du2Ky5cvo02bNli/fj0C\nAgIQGRkJe3t7/PrrrwgICDBkBEnli/wyl+dp82o4CRFR2QzaJ7B169Yylx88eNCQuzUa11MfAO1K\nL7cy59hARGQcOLOYgQTtjERy82toeax1ieV28XbwH+kvUSoiopI4n4ABrAo/hveODkJwtx/RzioT\nK7atQJ42D1bmVvAf6c9OYSIyGE4qI7Effo3HmAN98bn7Jswb4St1HCIyMUZ/dVBd9vOpixi7vx9m\nOn7LAkBEtQKLgJ4cOZeMQbt8MOHFRRwPiIhqDRYBPYhNvIneG/vgDes5+O69sVLHISKqNBaBp3T5\nxl10+1aNPk0nYduMKVLHISKqEnYMP4Xrtx/AcWEvKBv1xbHPvpA6DhERrw6qKbczstE+0Be2Vkr8\n9mUwB4QjIqPAIlADMrPz0W7eADS1aIVLi9bBwpytakRkHFgEDCyvoAgvzR4GM5k5rgZtg1U9TtNM\nRMajqt+d/AargiJtMTrOGYdC5CH5izAWACKq9fgtVknFxQJuc6dCo72Oq/P3oeEz9aSORET01FgE\nKqG4WKDLJwFILjiDy/MOocVzz0odiYhIL1gEKqHvFwtxNicc52dEo/XzjaWOQ0SkNywCFXhj8Qoc\nzliHM+8dxcutm0sdh4hIr1gEnmDiyg3YfXsxosYdgZudjdRxiIj0jkWgHDPW7sL663MRPvwwujvb\nSh2HiMggWATKMH/LL1iW+B629Y9A304OUschIjIYFoH/sTwsGvPPvoXvvPdgeA9XqeMQERkUxzv4\nm/URpzH9+DAs9tqGiX1fkToOEZHBsQj8vx9jzmPioYGY57wWM4b0kjoOEVGNYBEAEBl3BcP29MV7\ndl/j8zEDpI5DRFRjTL4InLp4A//YqsboF+YjeNJIqeMQEdUoky4Cvyen49Xv+6B/i2kInTZR6jhE\nRDXOZItAcup9dAr2QbfGb2J3wHSp4xARScIk5xO4de8hHBao4fhsd5z6fDFnBSOiOoOTylRAk5kL\nu0/6wbpee1wIWs0CQER1SlW/OyVrDtq/fz8cHR3x8ssvY9GiRTWyz5y8QnT4dBieM7fG2S9WmUwB\niIqKkjpCncL3U7/4fkpLkiKg1WoxdepU7N+/H3/88Qe2bt2KixcvGmRf4ZHh8B3ni55+KjTr1Qb5\nN2/jjy9CUc/S3CD7M0b8T6ZffD/1i++ntCQpAqdPn0b79u1ha2sLS0tLjBw5EmFhYXrfT3hkOKaF\nTEOEbQSOvBSNfN90NMu7h8NHI/S+LyKi2kiSInDz5k20adNG97h169a4efOm3vcTvCUYScqkEsuS\nPa5hxbYVet8XEVFtJMkAcjJZ5driK/u6qjqAA5CtM43+gMfmz58vdYQ6he+nfvH9lI4kReCFF17A\njRs3dI9v3LiB1q1bl3iNkV60RERUp0jSHOTp6YkrV64gJSUFBQUF2L59OwYOHChFFCIikybJmYCF\nhQVWrlwJX19faLVaTJgwAR06dJAiChGRSZPsPoF//OMfuHz5Mq5evYo5c+bolktx/0BdZmtrC4VC\nAaVSic6dO0sdp9YZP3485HI5XFxcdMs0Gg3UajXs7e3h4+ODjIwMCRPWHmW9l4GBgWjdujWUSiWU\nSiX2798vYcLa5caNG/D29oaTkxOcnZ0RHBwMoOqfT6MaO6gm7x8wFTKZDFFRUUhISMDp06eljlPr\njBs3rtQXU1BQENRqNRITE9G7d28EBQVJlK52Keu9lMlk+PDDD5GQkICEhAT07dtXonS1j6WlJZYt\nW4YLFy7g5MmTCAkJwcWLF6v8+TSqIlBT9w+YGnayV9+rr76Kpk2blli2Z88e+Pn5AQD8/Pywe/du\nKaLVOmW9lwA/n9VlbW0NNzc3AEDDhg3RoUMH3Lx5s8qfT6MqAjV1/4Apkclk6NOnDzw9PbFmzRqp\n49QJ6enpkMvlAAC5XI709HSJE9VuK1asgKurKyZMmMCmtWpKSUlBQkICvLy8qvz5NKoiYKj7AkzZ\nsWPHkJCQgH379iEkJARHjx6VOlKdIpPJ+Ll9CpMnT0ZycjJ+++032NjYYMaMGVJHqnWysrIwdOhQ\nLF++HI0aNSrxXGU+n0ZVBCpz/wBVjY2NDQDg+eefx+DBg9kvoAdyuRxpaWkAgNTUVLRs2VLiRLVX\ny5YtdV9UEydO5OezigoLCzF06FCMGTMGgwYNAlD1z6dRFQHeP6BfOTk5ePjwIQAgOzsbERERJa7M\noOoZOHAgQkNDAQChoaG6/3xUdampqbqff/rpJ34+q0AIgQkTJqBjx4744IMPdMur/PkURuaXX34R\n9vb2ws7OTnz55ZdSx6nVrl27JlxdXYWrq6twcnLi+1kNI0eOFDY2NsLS0lK0bt1arFu3Tty7d0/0\n7t1bvPzyy0KtVov79+9LHbNW+N/3cu3atWLMmDHCxcVFKBQK8frrr4u0tDSpY9YaR48eFTKZTLi6\nugo3Nzfh5uYm9u3bV+XPp9FOKkNERIZnVM1BRERUs1gEiIhMGIsAEZEJYxEgIjJhLAJU63zxxRdw\ndnaGq6srlEplta4tT0lJkfRyxA0bNsDf3x8AsHr1amzatEmyLGTaJBlKmqi6Tpw4gfDwcCQkJMDS\n0hIajQb5+fk1muHxBXX6ulP4nXfe0ct2iKqDZwJUq6SlpaFFixawtLQEADRr1kx3V/SZM2fQrVs3\nuLm5wcvLC1lZWUhJSUGPHj3g4eEBDw8PnDhxotQ2tVotPvroI3Tu3Bmurq747rvvSr0mJSUFDg4O\n8PPzg4uLC27cuIHFixfr1gkMDNS9dvDgwfD09ISzs3OJ8ZrWr18PBwcHeHl54fjx47rlgYGBWLJk\nCQBApVIhICAAXl5ecHBwQExMDIBHN/4NHz4cTk5OGDJkCF555RXExcU9/RtKVBM3NRDpS1ZWlnBz\ncxP29vZiypQpIjo6WgghRH5+vnjppZdEbGysEEKIhw8fiqKiIpGTkyPy8vKEEEIkJiYKT09PIYQQ\nycnJwtnZWQghxOrVq8WCBQuEEELk5eUJT09PkZycXGK/ycnJwszMTJw6dUoIIcSBAwfEpEmThBBC\naLVa0b9/f3HkyBEhhBAajUYIIUROTo5wdnYWGo1G3Lp1S7Rt21bcvXtXFBQUiG7dugl/f38hhBCB\ngYFiyZIlQgghVCqVmDlzphDi0Y2Tffr0EUIIsXjxYvHuu+8KIYT4/fffhYWFhYiLi9Pb+0qmi81B\nVKs0aNAAcXFxOHr0KA4fPowRI0YgKCgI7u7usLGxgYeHB4BHQ+sCQEFBAaZOnYqzZ8/C3NwciYmJ\npbYZERGB8+fPY9euXQCAzMxMXL16Fba2tiVe9+KLL+om5omIiEBERASUSiWAR8NyXL16Fa+++iqW\nL1+uG773r7/+QmJiIlJTU6FSqdC8eXMAwIgRI8rMAgBDhgwBALi7uyMlJQXAo4EAHw8N4OTkBIVC\nUa33j+h/sQhQrWNmZoaePXuiZ8+ecHFxQWhoqO7L/38tW7YMNjY22LRpE7RaLaysrMp83cqVK6FW\nq5+43wYNGpR4PGfOHEyaNKnEsqioKBw6dAgnT56ElZUVvL29kZeXV6r/QDzhRv369esDAMzNzVFU\nVFSpdYiqi30CVKskJibiypUruscJCQmwtbWFg4MDUlNTERsbCwB4+PAhtFotMjMzYW1tDQDYuHEj\ntFptqW36+vrim2++0X3hJiYmIicn54k5fH19sW7dOmRnZwN4NBfGnTt3kJmZiaZNm8LKygqXLl3C\nyZMnIZPJ4OXlhejoaGg0GhQWFmLnzp26wiCEqPALvlu3btixYwcA4I8//sD58+cr83YRVYhnAlSr\nZGVlwd/fHxkZGbCwsMDLL7+M7777DpaWlti+fTv8/f2Rm5uLZ599FgcPHsSUKVMwdOhQbNy4EX37\n9tU1EwH/vbpn4sSJSElJgbu7O4QQaNmyJX766adS+/77X/NqtRoXL15Ely5dAACNGjXC5s2b0bdv\nX3z77bfo2LEjHBwcdM9bW1sjMDAQXbp0QZMmTXTNSI+3W96VRo+XT5kyBX5+fnBycoKjoyOcnJzw\n3HPPPeW7SQRwADmiWqC4uBiFhYWoX78+kpKSdHPIWljw7zh6OvwEEdUC2dnZ6NWrFwoLCyGEwKpV\nq1gASC94JkBEZMLYMUxEZMJYBIiITBiLABGRCWMRICIyYSwCREQmjEWAiMiE/R8StKMhUM0LxgAA\nAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x2bbc890>"
       ]
      }
     ],
     "prompt_number": 24
    }
   ],
   "metadata": {}
  }
 ]
}