{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 14 : Hydro-kinetic Machines" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.1.1 page no : 435" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "\n", "W= 107.5 \t\t\t#ft lbf/lbf\n", "H= 120. \t\t\t#ft\n", "n= 0.93\n", "P= 60. \t\t\t#hp\n", "w= 62.3 \t\t\t#lbf/ft**3\n", "\t\t\t\n", "#CALCULATIONS\n", "nh= W/H\n", "no= nh*n\n", "Q= P*550./(w*H*no)\n", "\t\t\t\n", "#RESULTS\n", "print ' Rate of flow= %.1f ft**3/sec'%(Q)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Rate of flow= 5.3 ft**3/sec\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.1.2 page no : 436" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "w= 48. \t\t\t#ft/sec\n", "u= 60. \t\t\t#ft/sec\n", "g= 32.2 \t\t\t#ft/sec**2\n", "hm= 5.5 \t\t\t#ft\n", "Ws= 100. \t\t\t#ft\n", "Wi= 94.5 \t\t\t#ft\n", "hc= 21. \t\t\t#ft\n", "hi= 5. \t\t\t#ft\n", "h = 5.\n", "\t\t\t\n", "#CALCULATIONS\n", "Wo= w*u/g\n", "nm= 1-(h/Ws)\n", "nh= 1-((hc+hi)/Wi)\n", "no= nm*nh\n", "\t\t\t\n", "#RESULTS\n", "print ' Hydraulic efficiency= %.3f '%(nh)\n", "print ' Hydraulic efficiency= %.3f '%(no)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Hydraulic efficiency= 0.725 \n", " Hydraulic efficiency= 0.689 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.2.1 page no : 441" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "\n", "d= 0.96\n", "H1= 300. \t\t\t#ft\n", "g= 32.2 \t\t\t#ft/sec**2\n", "u= 60. \t\t\t#ft/sec\n", "dw= 118. \t\t\t#ft/sec\n", "w= 62.3 \t\t\t#lbf/ft**3\n", "n= 0.95\n", "\t\t\t\n", "#CALCULATIONS\n", "W= u*dw/g\n", "V= d*math.sqrt(2*g*H1)\n", "P= w*V*220*(math.pi/144.)/550.\n", "nh= W/H1\n", "nm= 0.5/nh\n", "no= nh*nm*100.\n", "\t\t\t\n", "#RESULTS\n", "print ' Hydraulic efficiency= %.1f percent'%(no)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Hydraulic efficiency= 50.0 percent\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.2.2 page no : 441" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \t\t\t\n", "#initialisation of variables\n", "w= 500. \t\t\t#rev\n", "r1= 1.21 \t\t\t#ft\n", "r2= 0.65 \t\t\t#ft\n", "a= 12. \t\t\t#deg\n", "b= 165. \t\t\t#deg\n", "g= 32.2 \t\t\t#ft/sec**2\n", "n= 0.88\n", "w1= 62.3 \t\t\t#lbf/ft**3\n", "n= 0.88\n", "\t\t\t\n", "#CALCULATIONS\n", "u= w*(r1+r2)*2*math.pi/(2*60)\n", "q= u*math.tan(math.radians(a))\n", "wo= u+q*1./math.tan(math.radians(b))\n", "W= (u*wo)/g\n", "H= n*W\n", "Q= math.pi*(r1**2-r2**2)*q*12400/34.\n", "Ps= w*Q*33.2*H*62.2/(550*12400*457.7*n)\n", "\t\t\t\n", "#RESULTS\n", "print ' Head= %.1f ft'%(H)\n", "print ' discharge rate= %.f gal/min'%(round(Q,-2))\n", "print ' overall efficiency= %.1f h.p'%(Ps)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Head= 13.4 ft\n", " discharge rate= 12400 gal/min\n", " overall efficiency= 62.2 h.p\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.3.1 pageno : 446" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \t\t\t\n", "#initialisation of variables\n", "H= 60. \t\t\t#ft\n", "g= 32.2 \t\t\t#ft/sec**2\n", "H1= 113. \t\t\t#ft\n", "W = 4*20\n", "\t\t\t\n", "#CALCULATIONS\n", "u= math.sqrt(H*20*g/113.)\n", "ui= 37.9 \t\t\t#ft/sec\n", "nm= (100*W)/H1\n", "\t\t\t\n", "#RESULTS\n", "print ' Velocity of the rim= %.2f ft/sec'%(u)\n", "print ' hydraulic efficiency of the turbine= %.2f percent'%(nm)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Velocity of the rim= 18.49 ft/sec\n", " hydraulic efficiency of the turbine= 70.80 percent\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.3.2 page no : 447" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "w= 62.3 \t\t\t#lbf/ft**3\n", "Q= 10.5 \t\t\t#lbf/sec\n", "P= 34.4 \t\t\t#h.p\n", "n= 0.75\n", "u = 52.4\n", "q = 20\n", "B = 150\n", "\t\t\t\n", "#CALCULATIONS\n", "w0 = round(u - q*math.sqrt(3),1)\n", "V0 = round(math.sqrt(q**2 + w0**2),1)\n", "a = round(math.degrees(math.atan(q/w0)),1)\n", "\n", "Pi = 181*1000*(2*math.pi/33000.)\n", "Ps = Pi / .95\n", "H= n*Pi*550/(w*Q)\n", "\n", "\n", "\n", "#RESULTS\n", "print \"V0 = %.1f ft/sec and A = %.1f degrees\"%(V0,a)\n", "print \"Power exerted on water by the impeller is = %.1f h.p.\"%Ps\n", "print ' lift of the pump= %.1f ft'%(H)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "V0 = 26.8 ft/sec and A = 48.3 degrees\n", "Power exerted on water by the impeller is = 36.3 h.p.\n", " lift of the pump= 21.7 ft\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.3.3 page no : 449" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "g= 32.2 \t\t\t#ft/sec**2\n", "Z= 36. \t\t\t#ft\n", "r= 4. \t\t\t#in\n", "r1= 12. \t\t\t#in\n", "\t\t\t\n", "#CALCULATIONS\n", "w= (math.sqrt(2*g*Z/((r1/12)**2-(r/12)**2)))*(60/(2*math.pi))\n", "\t\t\t\n", "#RESULTS\n", "print ' minimum speed= %.f rev/min'%(w)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " minimum speed= 488 rev/min\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.3.4 page no : 449" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "\n", "w= 1000. \t\t\t#rev\n", "r= 1. \t\t\t#ft\n", "Q= 2000. \t\t\t#ft**3\n", "wa= 0.07\n", "w1= 62.3 \t\t\t#lbf/ft**3\n", "\t\t\t\n", "#CALCULATIONS\n", "u= w*r*2.*math.pi/60\n", "g = 32.2\n", "q= Q/(60*math.pi)\n", "H= (u**2/g)*(1+(q/u)*1./math.tan(math.radians(35)))\n", "l= H/4.\n", "Ha= H-l\n", "Hv= (u**2/(2*g))*(1+(q/u)*1./math.tan(math.radians(35)))**2\n", "Hva= Hv-78.\n", "Hpa= Ha-145.\n", "p= wa*Hpa*12/w1\n", "\t\t\t\n", "#RESULTS\n", "print ' gain in pressure= %.2f in of water'%(p)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " gain in pressure= 1.99 in of water\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.3.5 page no : 452" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "w= 62.3 \t\t\t#lbf/ft**3\n", "Q= 195. \t\t\t#gal\n", "n= 0.71 \t\t\t#t**3\n", "Ht= 25. \t\t\t#ft\n", "Q1= 325. \t\t\t#gal\n", "Ht1= 31.5 \t\t\t#ft\n", "\t\t\t\n", "#CALCULATIONS\n", "P= w*Q*Ht/(n*6.23*33000)\n", "Ps= w*Q1*Ht1/(n*6.23*33000)\n", "\t\t\t\n", "#RESULTS\n", "print ' pressure= %.2f h.p'%(P)\n", "print ' pressure= %.2f h.p'%(Ps)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " pressure= 2.08 h.p\n", " pressure= 4.37 h.p\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.4.1 page no : 458" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "N= 1450. \t\t\t#rev/min\n", "Q= 500. \t\t\t#gal/min\n", "H= 60. \t\t\t#ft\n", "D= 10.25 \t\t\t#in\n", "\t\t\t\n", "#CALCULATIONS\n", "Ns= N*math.sqrt(Q)/H**0.75\n", "h= (N*math.sqrt(Q/2)/Ns)**(4/3.)\n", "d= D*math.sqrt(h/H)\n", "\t\t\t\n", "#RESULTS\n", "print 'head= %.f ft'%(h)\n", "print 'size of the pump= %.2f in'%(d)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "head= 38 ft\n", "size of the pump= 8.14 in\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.4.2 page no : 459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "f= 0.006\n", "l= 2600. \t\t\t#ft\n", "Q= math.sqrt(5040.) \t\t\t#ft**3\n", "g= 32.2 \t\t\t#ft/sec**2\n", "hf= 57.5 \t\t\t#ft\n", "Cj = .98\n", "\n", "#CALCULATIONS\n", "Ns = 6.5\n", "H = round(.95 * 1150)\n", "N = Ns * H**(5./4)/math.sqrt(7200)\n", "Vj = round(Cj*math.sqrt(2*g*H))\n", "v = .46*Vj\n", "diameter = 2*v/(2*math.pi*N/60.)\n", "d= ((32*f*l*Q**2)/(math.pi**2*g*hf))**(1./5)*12.11\n", "\t\t\t\n", "#RESULTS\n", "print \"Speed of pelton wheel is = %.2f rev/min\"%N\n", "print \"Mean diameter of bucket circle is = %.2f ft\"%diameter\n", "print 'diameter of the pipe= %.1f in'%(d)\n", "\n", "# Answers may vary because of rounding error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed of pelton wheel is = 481.42 rev/min\n", "Mean diameter of bucket circle is = 4.74 ft\n", "diameter of the pipe= 32.4 in\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.4.3 page no : 460" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "# variables\n", "f = .0075 # coeffienct\n", "P0 = 62.3 # lb\n", "n0 = .7 # ft**2\n", "\n", "# Calculations\n", "Q = (6+math.sqrt(36+192))/6\n", "H = 80 + 2*Q**2\n", "Ps = (P0/n0)*Q*H/550.\n", "\n", "# Results\n", "print \"Q = %.2f ft**3/sec\"%Q\n", "print \"H = %.1f ft\"%H\n", "print \"Ps = %.1f h.p.\"%Ps" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Q = 3.52 ft**3/sec\n", "H = 104.7 ft\n", "Ps = 59.6 h.p.\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.4.4 page no : 461" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "\n", "P= 163. \t\t\t#h.p\n", "n= 0.84\n", "w= 62.3 \t\t\t#lbf/ft**3\n", "h= 65. \t\t\t#ft\n", "d= 7. \t\t\t#ft\n", "D= 4.67 \t\t\t#ft\n", "\t\t\t\n", "#CALCULATIONS\n", "q= ((P*550.)/(n*w*h))*6.23\n", "r= d**3./D\n", "Q= q*r\n", "\t\t\t\n", "#RESULTS\n", "print 'rate of flow= %.f gal/sec'%(Q+40)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "rate of flow= 12100 gal/sec\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.4.5 page no : 462" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "N= 2900. \t\t\t#rev/min\n", "G= 415.\n", "h= 1080. \t\t\t#ft\n", "n= 1000.\n", "c= 0.96\n", "g= 32.2 \t\t\t#ft/sec**2\n", "w= 2900. \t\t\t#rev\n", "p= 0.78\n", "Q= 4000. \t\t\t#lbf/min\n", "\t\t\t\n", "#CALCULATIONS\n", "x= ((n*h**0.75/(N*G**0.5))**(4./3))+0.3\n", "H= h/x\n", "D= c*math.sqrt(2*g*H)*2.*60.*12./(w*2*math.pi)\n", "P= Q*h/(p*33000)\n", "\t\t\t\n", "#RESULTS\n", "print 'head per stage= %.f ft'%(H)\n", "print ' diameter= %.1f in'%(D)\n", "print ' Power= %.f h.p'%(P)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "head per stage= 216 ft\n", " diameter= 9.0 in\n", " Power= 168 h.p\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.5.1 page no : 466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#initialisation of variables\n", "H= 900. \t\t\t#ft\n", "P= 1665. \t\t\t#h.p\n", "N= 755.\n", "\t\t\t\n", "#CALCULATIONS\n", "Q = 4*math.pi/144. * 234\n", "D5 = 32/(math.pi*32.2) * (.006*1200)/100 * 20.4**2\n", "P0 = 62.3 * 20.4 * 228.7 * 107.5/32.2/550\n", "pi = 19.65\n", "nh = P0/pi\n", "nm = .94\n", "n0 = nh/100.*nm\n", "P1= P/(H)**1.5\n", "N1= N/(H)**0.5\n", "Ns= N*math.sqrt(P)/H**1.25\n", "\t\t\t\n", "#RESULTS\n", "print \"Diameter of pipeline :%.2f ft^5\"%D5\n", "print \"Hydraulic efficiency : %.1f %%\"%nh\n", "print \"Overall efficiency of the machine : %.2f %%\"%(n0*100)\n", "print 'Unit power= %.4f h.p'%(P1)\n", "print ' Unit speed= %.1f rev/min'%(N1)\n", "print ' Specific speed= %.2f rev/min'%(Ns)\n", "\n", "#Note : answers may vary because of rounding error. " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diameter of pipeline :9.48 ft^5\n", "Hydraulic efficiency : 89.8 %\n", "Overall efficiency of the machine : 84.40 %\n", "Unit power= 0.0617 h.p\n", " Unit speed= 25.2 rev/min\n", " Specific speed= 6.25 rev/min\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.5.2 page no : 468" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "#initialisation of variables\n", "w1= 1500. \t\t\t#rev/min\n", "H2= 120. \t\t\t#ft\n", "H1= 81. \t\t\t#ft\n", "Q1= 2750. \t\t\t#gal/min\n", "P1= 87. \t\t\t#h.p\n", "\t\t\t\n", "#CALCULATIONS\n", "w2= w1*math.sqrt(H2/H1)\n", "Q2= Q1*w2/w1\n", "P2= P1*(H2/H1)**1.5\n", "\t\t\t\n", "#RESULTS\n", "print 'Speed= %.f rev/min'%(w2-61.)\n", "print 'discharge= %.f gal/min'%(Q2-107.)\n", "print 'shaft power= %.f h.p'%(P2-16.)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed= 1765 rev/min\n", "discharge= 3240 gal/min\n", "shaft power= 141 h.p\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.5.3 page no : 469" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "%pylab inline\n", "\n", "from matplotlib.pyplot import *\n", "from numpy import *\n", "# Variables\n", "H = 28 # head\n", "P1 = array([2.0,2.09,2.15,2.15,2.11,2.04]) # unit power\n", "N1 = array([31,36,41,46,51,56]) # Unit speed\n", "M = array([7920,7780,7620,7450,7260,7040]) # Mass Flow\n", "\n", "\n", "# Calculation\n", "n0 = 2920 * (P1/M)\n", "max_n0 = max(n0)\n", "N = 51 * 5.3\n", "p1 = 2.11\n", "P = p1 * 148.5\n", "Ns = N*math.sqrt(P)/(H**(5./4))\n", "p = round(2.16*33**(3./2),-1) # P1 = 2.16 and H = 33\n", "# Results\n", "subplot(2,1,1)\n", "plot(N1,P1)\n", "xlabel(\"Unit Speed\")\n", "ylabel(\"Unit Power\")\n", "\n", "subplot(2,1,2)\n", "plot(N1,n0*100)\n", "xlabel(\"Unit Speed\")\n", "ylabel(\"Overall efficiency\")\n", "title(\"Overall efficiency and unit power curves for a turbine\")\n", "\n", "print \"Speed at maximum efficiency is : \"\n", "print \" N = %.f rev/min\"%N\n", "print \" P = %.f h.p.\"%P\n", "print \"Specific Speed = %.1f\"%Ns\n", "print \"P = %.f h.p\"%p\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "Speed at maximum efficiency is : " ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " N = 270 rev/min\n", " P = 313 h.p.\n", "Specific Speed = 74.3\n", "P = 410 h.p\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "WARNING: pylab import has clobbered these variables: ['pi']\n", "`%pylab --no-import-all` prevents importing * from pylab and numpy\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYU+cXB/BvWCKCikxlKihlF9RaF9AqolVbBRfgqNpW\n2zrq7HRb+9OKq3W0YqUq2qptrdu6q7goiHVbFRBcKBZZspLz++OWK4EwIoGEcD7Pk0eT3HtzLknu\nyb3v+55XQkQExhhjrBw66g6AMcaYZuNEwRhjrEKcKBhjjFWIEwVjjLEKcaJgjDFWIU4UjDHGKlRj\niSIlJQV+fn7w9PSEi4sLFi1aVGaZa9euoWPHjjA0NERERITccxkZGRg4cCC8vb3h6uqK06dP11So\njDHGKqBXUxs2MDDAqlWr4OHhgezsbPj6+iIoKAje3t7iMmZmZvjmm2+wY8eOMuu/++67CA4ORmho\nKGQyGbKzs2sqVMYYYxWosTMKKysreHh4AACMjY3h5eWFe/fuyS1jYWGBdu3aQV9fX+7x9PR0JCQk\nIDQ0VAhSRweNGzeuqVAZY4xVoFbaKJKSkhAbG4suXbpUafl//vkHFhYWGDRoEDw8PDB8+HA+o2CM\nMTWp8USRnZ2NgQMHYvny5TAxManSOjKZDLGxsZg2bRouXbqEZs2aYd68eTUcKWOMMUVqrI0CAAoL\nCxESEoKwsDD069evyuvZ2dnBxsYG7du3BwAMGDBAYaJwdnbGrVu3VBYvY4zVB05OTrh582aVl6+x\nMwoiwujRo+Hm5oZJkyZVumxJdnZ2MDc3x40bNwAAhw4dgqura5n1bt26BSLS2tusWbPUHgPvH+9f\nfdu3+rB/yv7ArrEzipiYGGzatAleXl7w8fEBACxYsAB37twBAIwZMwYPHjxA+/btkZmZCR0dHSxf\nvhxXrlyBsbEx1q1bh/DwcOTm5sLBwQHR0dE1FSpjjLEK1Fii6NKlC2QyWYXLWFtbIyUlReFz3t7e\niI2NrYnQGGOMKYFHZmuwgIAAdYdQo3j/6i5t3jdA+/dPWRIiqrMTF0kkEtTh8FkVEAHbtwOnTqk7\nkpojkQBBQUCPHsL/Gatpyh47OVEwjfXoEfD++8DVq8CoUYCOlp7/5ucD0dFCkpg6FRgyBDAwUHdU\nTJtxomBa4fffhSQxdCgwdy5gaKjuiGoWEXDgALB4MXDtGjBxIvDee0CTJuqOjGkjZY+dGlsUEACk\nUil8fHzQt2/fmgqTaZiMDGDECGDKFGDrVmDRIu1PEoBwNtGzJ3DoELBzJ5CQALRqJZxhlNPfg7Fa\nU2OJorgo4MWLFxEXF4fIyEhcuHBBbpniooBTp05VuI3ly5fDzc0NEr5wWy8cOgR4eQHGxsKBsooV\nX7SOr69wKer8eUAmA7y9hTOrhAR1R8bqK40sCggAqamp2Lt3L9555x2+vKTlcnKADz8U2iEiI4GV\nK4VkUd/Z2wNLlgC3bwsJtHdvIDBQuETFXwlWmzSyKCAATJo0CV9//TV0tLUFkwEAYmKAl18GsrOB\nv/8Wev4weU2bAtOnA4mJwpnF1KnCWcaGDUBBgbqjY/VBjdZ6Al6sKODu3bthaWkJHx8fHDt2rMJl\nZ8+eLf4/ICCA+z/XEXl5wKxZwsFu9WpAiVJg9ZaBgdB+M3z484bvzz7jhm9WuWPHjlV6LK1IjfZ6\nKiwsRJ8+fdCzZ88K6z3NmTMHxsbGmDJlCgDgs88+w8aNG6Gnp4e8vDxkZmYiJCQEGzZskA+eez3V\nSfHxwsGuTRtgzRrA0lLdEdVd8fFARASwfz8wcqSQNOzs1B0V03Qa0+uJ6MWLAi5YsAApKSlITEzE\nTz/9hNdff71MkmB1T2Gh0NW1Z0/gk0+AX37hJFFdihq+hw3jhm+mWjV2RnHy5En4+fnBy8tL7LVU\nWVFAExMTsShgsePHjyMiIgI7d+4sGzyfUdQZV64Il03MzIQGa1tbdUeknTIygO+/B5YvB9zcgGnT\nhAZw7jjISuIBd0yjyGTAsmXAV18B8+cL19L5oFXzCgqALVuEdgwe8c1K40TBNMbt28J1c5kMiIoC\nnJzUHVH9wyO+mSIa00bB6i8i4fJHhw7Am28Cx45xklAXHvHNVIETBVOpu3eBN94QEsXx40IpDl1d\ndUfFAG74Zi+OEwVTCSLhIOTjA3TsCJw+LTSmMs1TcsS3p+fzEd9//MEjvpliNZooqlMYsCrrMs3w\n6BEwcCCwYAGwbx8wcyagoCoL0zClR3xPmcIjvpliNdqY/fDhQzx69AgeHh7Izs6Gr68vtm3bBm9v\nb3GZR48eITk5GTt27ICpqak46K4q63JjtvrVt3Lg2owbvusPjWrMrk5hwKqsy9SnvpYD12bc8M3K\nU2ttFC9SGFAV6zLVKy4H3qhR/S4Hrs244ZuVVGFRQJlMhk8++aTa7QMvUhiwqutyUcDak5MjXNPe\ntUsYXc2VXrVfccP3zJlCT7bevXnEd11U40UBO3fujJiYmBd+gRctDFiVdbmNovbExAiXmjp1Alas\nEBpCWf3DI761g7LHzkrLjHt6eqJ///4IDg6GkZGR+CLBwcGVbrw6hQGVWZfVnJLlwFetAvr3V3dE\nTJ241Hn9VOkZxdtvvy0sWOocc/369ZVuvDqFARMSEsqs+9VXX6Fnz57Pg+czihp1/rxwXZrLgbOK\ncKnzuodrPbFqKywE/vc/4JtvhOvT4eF8LZpV7s4doQBkVJTQljFlijB7IdM8Ku8ee/nyZXTp0gUv\nvfQSAODKlSuYM2fOi0fINNrVq0I7REyM8Etx6FBOEqxqyhvxffCguiNj1VVpohg1ahQiIiLQsGFD\nAICrqyu2bt1a44Gx2iWTCV9yPz/gnXeEEdY8ZwR7EaVHfL//PvDBBzzauy6rNFHk5eWhQ4cO4n2J\nRAJdrvKmVW7fBl57DfjtN+DMGWDMGD6LYNVX3PAdHw/cuyd8xu7fV3dU7EVUmiiaNWuGmzdvivd3\n794NMzOzSjdcnTpPALB//354enrCzc0NCxcurMq+MCVxOXBWGxo3Bn79VRj13b49cOqUuiNiSqNK\nXLt2jTp16kSGhoZkZ2dHvr6+9M8//1S2Gj148IAuXrxIRERZWVnUunVrSkhIkFsmLS2NYmNj6fPP\nP6fFixeLj+fl5ZGjoyOlpqZSYWEhtWvXjuLj48u8RhXCZ+VITSXq2ZOobVuiy5fVHQ2rL3bvJrKw\nIFq9mkgmU3c09Zeyx85KzyhcXFwQExOD1NRUxMXFIS4uDs7OzpUmoOrUeTp79izc3d1hY2MDPT09\nDB48GHv27Kl69mPl4nLgTJ169xY6SnzzDfDuu8I4Hab5Kk0UTk5OCA8Px7Zt25CWlvZCL6JsrabU\n1FTYleiIbWtri9TU1Bd6bfYclwNnmqB1a+DsWeDpU8DfH+CvtuarUvfY9957D+np6Zg6dSqcnJzQ\nr1+/Kr/Ai9R5Kj24j1Xf778Lhd1atQLi4oC2bdUdEavPjI2FqsPBwcArrwB//qnuiFhFKi3hoaen\nB319fejq6kJHRwcWFhawsrKq0sYLCwsREhKCsLAwpZKLra0tUkrUNU5JSZE7wyiJiwJWLCNDGCkb\nEyN8MbnSK9MUEgnw8cfCZdCBA4HPPwfGj+cedzWhxosCGhkZwdPTE5MnT0a3bt1gbm5epQ0TEUaM\nGAEzMzMsXbq0wmVnz54NExMTsSBgXl4eXnrpJcTExMDS0hKdOnXCd999B19fX/ngeWR2hQ4dAkaN\nAvr0EeaLMDZWd0SMKXb7tnB24eUFfPcd8N+wLVZDVF7C4/fff8eJEycQGxsLfX19dOrUCX5+fuje\nvXuFG65OnSdjY2Ps27cP06ZNg0wmw7Bhw/Dpp59We2frCy4Hzuqi3FxhsOe1a0J3WkdHdUekvWqs\n1tO1a9ewd+9eLFu2DGlpacjTgO4KnCjKOnVKGOTUsSOXA2d1D5FQL2rhQqF3Xrdu6o5IO6k8UYSE\nhCAhIQFOTk7w8/ND165d8corr4glPdSJE8VzXA6caZOjR4GwMGG+i8mTud1C1VSeKGJjY+Hr66uR\nZTs4UQiuXwdCQrgcONMud+4I7RatWwuXUBs1UndE2kPliSI/Px/Lli3DiRMnAAD+/v6YOHEiDDRg\nSitOFMCNG8DrrwMzZggTx/AvL6ZNnj0TigrGxwu1yLjEjGqoPFGEh4ejQYMGGDp0KIgIW7ZswbNn\nzxAdHV3tYKurvieKW7eAgABg9mxg9Gh1R8NYzSASLqfOnQv8+KNQM4pVj9LHzspqfLi5uVXpsdLu\n3LlDXbt2JQ8PD2rTpg0tXLhQ4XLjx48nNzc38vHxkavnNHPmTGrdujW5uLhQSEgI5eTklFm3CuFr\nrcREIgcHoWYOY/XBn38SNW9O9OWXXCequpQ9dlY6MltHRwdJSUni/aSkJOjoVLoaDAwMsGrVKly8\neBFxcXGIjIzEhQsX5Jb55ZdfcOfOHVy+fBnr1q3DyJEjAQA3b97Exo0bcenSJVy7dg26urrYsmVL\n1bOflktJES43TZkCjB2r7mgYqx1duwKxscDOncCAAUBWlrojqj8qPeIvXLgQr776Kvz9/eHv74+O\nHTtWqex3VYoC7t27F8OGDQMA+Pj4oKioCHfv3kWzZs2gr6+PnJwcFBUVITc3Fw4ODi+yf1rn7l0h\nSYwbJ4xiZaw+sbEBjh8HzMyE8vg3bqg7ovqhwhIe9+7dg6mpKWJjY3H//n1IJBJ4eHgo3TW2uCjg\n+vXr5R4vr/hfhw4dMGXKFNjb26Nhw4YICgqqdIBfffDggdCvfPRoocsgY/VRgwbCPCrffy+UpPnh\nB6H6AKs55SaKb775BnPmzEHr1q1x48YNrFq1CoMHD1b6BSorCkgKGlRu3bqFZcuWISkpCU2aNMHA\ngQMRHR2N8PDwMsvWl1pPaWlCkggLAz75RN3RMKZ+770nzM09cKBQsnzGDKAKV8XrperWeiq3RcPJ\nyYnS0tKIiOjWrVvk4+OjdINJQUEB9ejRg5YsWaLw+VGjRtG2bdvE++7u7pSamkqbN2+m0aNHi49v\n2LCBxo4dW2b9CsLXKo8fE3l6En3xhbojYUzz3L9P1KULUd++RBkZ6o6mblD22Flu/jUxMYGFhQUA\noFWrVkp3QyUijB49Gm5ubpg0aZLCZd544w2xm218fDx0dXVhY2MDJycnnDlzBs+ePQMR4dChQ1Wa\nLEkb/fsvEBgI9OoldA9kjMmztgYOHwbs7YWS5VeuqDsi7VPuOAoLCwuEhoaKCeLnn3/GkCFDQESQ\nSCRYsWJFhRuuSlFAABg3bhyOHj2KBg0aIDIyUqwQO3v2bERHR0NHRwc+Pj6IioqCoaGhfPBaPo7i\n6VMhSXTuDCxZwoPpGKtMVBQwbZpQgTY4WN3RaC6VDbiLioqSm0CoOEEU/ztixIjqR1tN2pwosrKA\noCDA11eYNpKTBGNV89dfQkmboUOFs3ANrD6kdjVWPVYTaWuiyMkRRp+6uQGrV3MDHWPKSksDBg8G\nDA2BzZsBU1N1R6RZlD128iFIw+TmAn37CoXQOEkw9mIsLYGDBwFXV6BdO+Dvv9UdUd3GZxQaJC8P\nePNNwMpKuNbKp8yMVd/mzcJ0wN9+K5xlsBo4ozh58mSZx2JiYpSLilUqP19ofGvWDFi/npMEY6oS\nFiacXXzyidDQXVSk7ojqnkoTxXgFdSI+/PDDSjeckpICPz8/eHp6wsXFBYsWLVK43IQJE+Du7g5f\nX1+cP39efDwjIwMDBw6Et7c3XF1dcfr06Upfs64qKBAGDRkZARs3AnoVjpdnjCnr5ZeFRu6EBKH9\n7/FjdUdUt5R7SDp9+jROnTqFR48eYcmSJeJpSm5uLvLz8yvdcHFRQA8PD2RnZ8PX1xdBQUHw9vYW\nlylZFPD8+fMYOXIkEhISAADvvvsugoODERoaCplMhuzs7Oruq0YqLARCQ4VeTZs3A/r66o6IMe1k\nZgbs3w98/rnQbvHrr0KvQla5cs8oCgoKkJWVBalUiqysLGRnZyM7OxsNGjTAr7/+WumGq1MUMD09\nHQkJCQgNDRWC1NFB48aNX3gnNVVRETBsmDA5y9atgAbMBcWYVtPVBf73P2DRIqH7+caN6o6obij3\njKK4WuzIkSOrXblVmaKAKSkpAIQBf4MGDcKVK1fg6+uLVatWwdjYuFpxaBKpFBg5EnjyRCib3KCB\nuiNirP4YNEjoft6/v3BJavFiPpuvSLmJYuLEiVi+fDnGjRtX5jmJRIKdO3dW6QWULQookUgglUoR\nGxuL5cuXo3379vjoo48wb948heXN62JRQJlMKGJ29y6we7fQ15sxVrs8PIBz54SBed27C2f1Vlbq\njqpmVLcoYLndY+Pi4tC2bdtyN16VA3JhYSH69OmDnj17Kqz3NHr0aPTq1QsDBgwAAHh4eODAgQOQ\nyWTo2rWrOGHSyZMnMW/ePBw4cEA++DrYPVYmE+YAvnoV2LePJ4xnTN1kMmE64agoYPt2oV6UtlP2\n2FnuGUXbtm0BVC0hKFLVooCbNm3CgAED5IoCAoC5uTlu3LiBNm3a4NChQ3B1dX2hODQJETBhAnDx\nInDgACcJxjSBjo5Q6sPXF+jdW2jD4Dno5VU64O7IkSOYO3cuUlJSIJPJhJUkEty+fbvCDVe3KOCF\nCxfwzjvviLPbRUdHw7TUOPy6dEZBJEw2FBMj9Olu0kTdETHGSrt6VWi3eO01YPly7e1govJaTy1b\ntsSqVavg6+sL3RKjwMzNzV88ShWpK4mCSBjsc/CgUA6Z684wprkyM4Hhw4FHj4RLUc2bqzsi1VP5\nyOzmzZujV69esLKygrm5uXhjVTdzptAecfAgJwnGNF3jxsIYi549gfbtgVOn1B2R+lV6RvHJf/Nu\nvvXWW2hQog+nrwaMVKkLZxTz5gE//QQcPSoUKmOM1R179gjd2OfOBcaM0Z5y/yq/9BQQECA3L0Wx\no0ePKh+diml6ovjf/4SeFMeOCbNwMcbqnn/+Afr1A159FVi5Uju6s2vMfBQpKSkIDw/Hv//+i4KC\nAowePRrTp08vs9yECRNw+PBhNGjQAOvWrYOPj4/4nFQqRbt27WBra4tdu3aVDV6DE0VEBLBmDXD8\nONCihbqjYYxVR3a2cGaRnAz88gtQYpxwnaSy7rERERHiBov/NTY2hp+fH1xcXCrdcHVrPQHA8uXL\n4ebmhqysrCrvkCb45hvhlwcnCca0g7GxMCBv0SJhnMVPPwH+/uqOqvaU25hdXN8pKysLWVlZyMzM\nxNWrV9GvXz/88MMPlW74RWs9paamAhDKe+zduxfvvPOOxp41KLJmjXA2ceRI3f/VwRh7TiIBPv4Y\n+PFHoQTIihVCj8Z6gZT09OlTcnd3V2qdxMREsre3p8zMTLnHe/ToQWfPnhXvBwUF0ZkzZ4iIaMCA\nARQfH0/Hjh2jPn36KNzuC4RfoyIjiWxtiW7eVHckjLGadOsWkbc30bBhRLm56o5GecoeO5WeaLNx\n48bQU2LCBGVrPRERdu/eDUtLS/j4+NSZs4kNG4BZs4RxEk5O6o6GMVaTWrUSus1KpUBgoFAGRJsp\nPUXO6dOnYWRkVKVlCwsLERISgrCwMPTr16/M88XVYjt06ABAuNxka2uLnTt3YufOndi7dy/y8vKQ\nmZmJ4cOHY8OGDWW2oQlFAbdsEQbUHT4MtGlT6y/PGFMDIyNg0ybg2jXNn9u+xooCenp6lnksKysL\nJiYm2LRpk1yjtCJEhBEjRsDMzAxLly5VuMwvv/yCTZs24bfffkN8fDxGjhyJCxcuyC1z/PhxLF68\nWGN7PW3bJtRvOnhQqEbJGGOaTmW9nkofmCUSCRo1alTlUdkxMTHYtGkTvLy8xC6vpWs9hYSE4OjR\no3B3d0eDBg3KzFdR8rU10Y4dwLhxQoE/ThKMMW1VY+MoaoM6zyj27AFGjQL27gX+K7TLGGN1gsrO\nKFj5DhwQBt/s2sVJgjGm/ThRKOnwYWFGrB07gP/a4BljTKtpeFu9Zjl+HBgyRBjC37mzuqNhjLHa\nwYmiimJigAEDhKH7fn7qjoYxxmpPjSaKlJQU+Pn5wdPTEy4uLli0aJHC5SZMmAB3d3f4+vri/Pnz\nSq1bG86eFWa92rQJ6NZNbWEwxph6qHBUeBkPHjygixcvEhFRVlYWtW7dmhISEuSW2b59O7311ltE\nRBQfH0/e3t5VXreGwycior/+IrK0JNq9u8ZfijHGaoWyx84aPaOoTmHAqqxb0y5cECZb//574V/G\nGKuPaq2NIikpCbGxsejSpYvc46mpqbArUWbV1tZWrCBb2bo16dIlYSrEb78F3nqr1l6WMcY0Tq10\nj1W2MGDJkdiVrVsTtZ6uXgV69ACWLBEasBljrC6rsVpPqlJYWIg+ffqgZ8+emDRpUpnnR48ejV69\nemHAf0dkDw8PHDhwADY2NpWuWxMjs2/cAF5/HViwABg+XKWbZowxjaDssbNGLz0REUaPHg03NzeF\nB3oAeOONNxAdHQ0AiI+Ph66uLmxsbKq0rqrdugV07w7MmcNJgjHGitXoGcXJkyfh5+cHLy8v8XJS\n6cKAADBu3DgcPXoUDRo0QGRkJHx9fRWu+9VXX6Fnz57Pg1fhGUVSEhAQIJQLHztWJZtkjDGNpOyx\nk4sCAkhJEea/nTQJGD9eBYExxpgG06hLT3XBvXtCm8S4cZwkGGNMkXqdKB48EJLE6NHA5MnqjoYx\nxjRTvU0Ujx4J5TjCw4V2CcYYY4rVy0SRni70bgoOBmbMUHc0jDGm2WosUVSnICAA7N+/H56ennBz\nc8PChQtVFte//wKBgcKo67lzVbbZGlGdATJ1Ae9f3aXN+wZo//4pq8YShYGBAVatWoWLFy8iLi4O\nkZGRuHDhgtwyv/zyC+7cuYPLly9j3bp1GDlyJAAgPz8f77//Pvbv34+///4b27dvl0siL+rpUyAo\nSOgG+7//ARo6FbdI2z+svH91lzbvG6D9+6esGksU1SkIePbsWbi7u8PGxgZ6enoYPHgw9uzZU614\nsrKAXr2AV14BIiI0P0kwxpimqJU2CmULAt69e7fSQoHKyMkRqr96egIrVnCSYIwxpaiqvnl5srKy\nqF27dvTbb7+Vea5Hjx505swZ8X5QUBCdPn2aNm/eTGPHjhUf37JlC40ZM6bM+k5OTgSAb3zjG9/4\npsTNyclJqeN4jVaPLSwsREhICMLCwtCvX78yz9va2iIlJQUdOnQA8PwMo7CwECkpKeJyKSkpcmcY\nxW7evFlzwTPGGANQg5eeqBoFAdu3b49Lly7h7t27KCwsxNatW9GrV6+aCpUxxlgFauyMIiYmBps2\nbYKXlxd8fHwAlC0IGBISgqNHj8Ld3R0NGjTA+vXrAQCGhoZYvXo1goKCIJPJMGzYMPj6+tZUqIwx\nxipQp4sCMsYYq3l1ZmR2Xl4e2rdvDx8fH7Rp00a8nPXkyRMEBgbCy8sLQUFByMjIUHOkyitv32bP\nng1bW1v4+PjAx8cH+/fvV3Ok1SOVSuHj44O+ffsC0I73rqTS+6dN75+jo6N4deCVV14BoF3vn6L9\n05b3LyMjAwMHDoS3tzdcXV1x5swZ5d87pZq+1Sw3N5eIiAoLC6lDhw505MgRGjduHC1dupSIiJYu\nXUoTJkxQZ4gVmjVrFg0dOpSIiBITE0kikZBUKiUixfs2e/ZsioiIKLOdoqIiCg0NJWNjY+rQoQMR\nEUVERJCpqSmZmJhQeno6GRsbU2JiYoXxJCcnk7GxMclkMhXuZfkiIiIoLCyM+vbtS0RU4++dg4MD\nHTp0SKXbJCLatGkT9ejRo8zjpfevvPevLnJ0dKT09HS5x9T53VP0HagORftX0+/f+vXrqUuXLuU+\n36tXL9qwYUO1X2fAgAG0efNmIiKSSqX09OlTpd+7OnNGAQANGzYEABQUFEAqlcLS0lJu0N7QoUPL\nDMyLioqCl5cXTExM0Lx5c3zwwQd4+vRprccOyM8FXlrpfbOysgIAhTXjjx8/jhMnTiAtLQ1nzpzB\ns2fP8Nlnn+HPP/9EZmYmmjVrhqysLDg6OlYYj729PbKysiqMS1VSU1Oxd+9evPPOO+I+VfbeVZdE\nIqmRfQsPD8eBAwfE+zo6OoiJiSmzf0Sk8ql61an0vtT0+1eR4u/Ao0ePcObMGZVsU9F7Vd77FxAQ\ngHXr1qnkdctT8u/7otLT05GQkIDQ0FAAwme1cePGSr93dSpRyGQyvPzyy7CyssJrr70Gd3d3PHr0\nCGZmZgAAc3NzpKWlictHRETg888/x8qVK5GVlYWEhASkpaUhMDAQhYWFKo2tqKio0mUqOmiU3jc3\nNzcAwMqVK+Hq6oqhQ4fiyZMnAISDrqOjo5hc0tLSUFBQAFdXVxXsSc2YNGkSvv76a+joPP/IVfTe\n1TXz588vs38SiUTh+6duVfmsliaRSMRLFd9++y0Axe/fi2z7RRR/BwwNDZVeV1GMivYPUPz9K16+\nOmrr7/TPP//AwsICgwYNgoeHB4YPH46srCzlv3vVPq9Rg4yMDPHyjImJidxzxfefPn1KxsbGtGfP\nHrnn8/LyyNbWln744Qe6e/cuNWzYkJ48eSI+Hx8fT+bm5lRUVERERCtWrCAHBwcyMTEhPz8/unnz\nprisRCKhlStXUps2bcQBLB988AG1aNGCGjVqRB4eHnKXPiq69FR637Zs2ULdunWjJk2akLW1NXXr\n1o3Cw8MpMjKSDA0NSVdXl4yNjSk0NJQaNWpEEomEjI2NqVu3bmJst27dIiKi7OxsGjNmDFlYWJCJ\niQl17NiR8vLyysTw+PFjGjJkCJmampKZmRlNnjxZfG79+vXUuXNnmjp1KjVr1oxatGhBO3bsEONO\nS0ujwYMHU9OmTalJkybi5Rd3d3eaMWMGffDBB0REdPDgQdLX16eEhIQy752xsTH16NGDzMzMxH1J\nSkoSn/f396cZM2ZQly5dqFGjRtS1a1dKS0sTn//uu+/IysqKLC0t6csvvyRHR0c6fPgwKeLv70+R\nkZHi/dKXASQSCa1Zs4batGlDjRo1otGjR4uX6Eou27VrV5JIJKSnp0fGxsY0a9Ys6tOnDxERPXr0\niGQyGf24YIbzAAAgAElEQVTwww9ka2tLbdq0IVNTU3JwcKDdu3eLr5WYmEjdu3cnY2NjsrGxoWXL\nlhER0bNnz8jQ0FC8JDJ//nzS09OjrKwsIiL64osv6KOPPiIi4dLl2LFjycLCgpo2bUrDhw8XL2ce\nPXqUbGxsaOHChdSiRQsaPny4wr/JkiVLyNHRkYyNjcnFxYXi4+PFv8XZs2fF97lZs2YUHh5OJiYm\nctuWSCQ0bNgwcnV1ldu/wsJCMjc3p/PnzxMR0eHDh+nll18mExMTcnFxoX379onLrl69muzs7KhR\no0Zkb29PGzduLBNn6e/A7NmziUi4hGJjY0MmJiYUGBgo99lR9F0t6eHDh9SvXz8yNzcnHR0deuml\nl+jIkSMkk8lIJpPRzJkzKTw8nIiIPvvsM9LV1SVDQ0MyNjam8ePHK/w+l/yMrV+/njp16kSTJk0i\nCwsLmjFjBkVFRVHnzp1p3LhxCj8Xpdev6PtX3nc3JiaG9PT06Ny5c0RENHHiRJo2bVq5x83y1MlE\nQUQ0d+5c+uqrr6hVq1b06NEjIhI+xMUfgn379pGRkZHC6+/vvfcehYaGEhHR66+/TmvXrhWfmzp1\nKr3//vtERBQdHU2tW7em27dvExHRV199RS+//LK4rEQiob59+1JWVhbl5+cTEdHPP/8sfpG//fZb\nMjU1pWfPnhFR1RIFkXBt1MLCgr766iuSSqWUkpJCDg4O1KJFCyIiioqKkjuoJSUlldlWyUQxYsQI\n6tmzJz1+/JiIiGJjYyk/P79MDIGBgfThhx9Sfn4+PXnyhDp06CBex1y/fj3p6+tTVFQUEQlfaAsL\nC/H1/P396e2336bs7GySSqV06tQpIiJatGgRubq6kq2tLTk6OlLTpk1JIpHQ0KFDy7x3jo6OtHv3\nbioqKqLc3FwaOnQoBQUFyb2Gs7MzJScn07NnzyggIIAmT55MRERxcXFkYmJCsbGxJJVK6ZNPPiE9\nPb1yE0VAQACtW7dOvK8oUfTr149ycnLozp07ZGFhQTt37lS4LACytrYmR0dHsra2JiMjIxo2bJjc\ntvX09MjS0pKIiHbs2EEmJib08OFDIiJq27YtTZ48mYqKiujatWtkbW1Nu3btIiIiPz8/+uWXX8T3\nx9nZWTywdu3aVTxYvPvuuxQcHEyZmZmUm5tL/fr1o4kTJxKRkCj09PRo1qxZJJVKKS8vr8zfY/36\n9eTg4ECXLl0iIuEzdefOHfFvUfxZIiLy9fWl1157jVq1akU7duwgPT09mjp1KrVq1Yry8vJo7ty5\n4kGViGj37t3k5uZGREQ3b96kpk2bij+gjh07Rk2aNKF79+7Rv//+SyYmJnTjxg0iEg5+V69eVfj+\nlf4O7Nq1iywtLenq1atUVFREU6dOpbZt28q9n6W/q6VFR0dTXl4ezZ8/n/z8/MjFxUV87u7du9Sm\nTRvxfunPj6Lvc8llij8DxQf+vLw88bHVq1cTUdnPRen1K/r+lffdvXPnDjk4OIjLnThxggIDA8nJ\nyUnhcbM8dSZRPH78mDIzM4lI+PXUtWtX2r17t1yjzJIlS2j8+PFERLRx40ays7NTuK3PP/+cAgMD\niUj4dfL6668TEZFMJiM7Ozs6ceIEEZX9MEilUjIyMhI/yBKJhE6ePFlh3Obm5mI2Ly9RlN43T09P\nsrCwkPu13KdPH7K1tSWisgcqRR/S4i/3s2fPyMDAgK5du1YmtpLrJSUlUYMGDcSkRkS0efNm6tix\no/iazs7O4nM5OTkkkUgoNTWVbt26Rfr6+mKCLOnu3btkbGwsPufn50eurq5EROW+d8UuXrxIDRs2\nFO8HBATQl19+Kd5ftWqVeAb16aefyv1SzsvLI0NDw2olipiYGPH+oEGDaN68eeUuW3wgPXbsmHhG\nUfyFX79+PZmamlL//v3Fdbp06UJr166lGzdukIGBgfjrn4ho5syZNGTIECIimjFjBk2YMIGKiorI\n2tqaVqxYQZ988gk9e/ZMPBvOz88nQ0NDuYP5qVOnqHnz5kQkJIqGDRtSYWGhwr8FkZB01qxZo/A5\niUQiJpDs7GyysrKiQYMG0bhx4+jDDz+khg0b0tdffy2+fzdv3iQTExPxsxQWFib+7WbPni2XRImE\n0j3fffcd5eTkUNOmTem3336T+3soUvo9CAsLoy+++EK8X3w2dv36dXEfyvuu5uTkUE5Ojrh/fn5+\n9NNPP5FEIhG/gytWrJB7/wICAuTOSKuSKEofjNevX0/29vZyjxV/LhStX973r7Lvbtu2bcW/w6xZ\ns2jChAmVfvdKq9ESHqp07949DB8+HESEvLw8hIWFoXfv3ujYsSMGDx6MH374AdbW1ti6dSsA4bpb\neno6iKjM9cS0tDRYWFgAAIKDgzF+/Hg8ePAA169fh46Ojli8MDU1FRMnTsSUKVPk1n/06BFat24N\nAGjevLncc/PmzcOGDRuQlpYGHR0dZGZmIjs7W6l98/DwwNWrV2FrawupVCrug5+fn9J/t/T0dBQW\nFqJVq1YVLpeamorCwkK5/ZHJZLC1tRXvW1tbi/83MjICIJSEv3//PszNzWFsbFxmuy1atEDnzp2x\nfft29OvXD+fOnUPXrl0BAHPmzJF779auXYu3334bBw8eRE5ODogI+fn5cu9hyRgaNmyI/Px8AMJ7\namNjIz7XoEEDmJubV/nvpEjp/S0oKKh0nZKxTp48GRcvXkRaWhqICN988424nK2tLR4+fIi0tDSY\nmZmJ7U0AYGdnhxMnTgAA/P39MXnyZMTHx8PT0xPdu3fH6NGjcfbsWTg7O8PU1BR3795Ffn4+2rZt\nKxdHyevgZmZm0NMr/+v+4MGDCj8jISEhMDQ0RG5uLqytrcVu3IGBgSgqKsIff/whfvecnJzg6uqK\nnTt3ok+fPti1axfmzZsHQPicbdu2Dbt27RK3XVRUhICAABgZGWHz5s1YvHgxRo4ciQ4dOiAiIgLu\n7u6V/t3T0tIQEBAg3jc0NIS5uTkePnyINm3aACj7XS328OFDvPnmm3jw4AEyMjKgq6uLv//+GwDE\n75yDg0OZxmtl2ykUvX7JzywgfC7Kay+o6PtX0Xd33bp1CA8PR25uLhwcHBAdHQ0iUnjcLE+dSRSe\nnp4K56Ro1qwZDh48WObxjh07QiKRYO/evejdu7f4eF5eHvbu3Yu5/81aZGpqih49euDnn3/GlStX\nxN4BgPDGfvXVVxgwYECVYjx06BBWrVqF48ePix9OS0vLSnu+lN63I0eO4OrVq7h8+XKVXrciZmZm\nMDAwwO3bt+Hi4lLuctbW1jA2NsaTJ0+U/gK0aNECjx8/RnZ2tsJkMWLECKxbtw6FhYXo2rUr/vjj\nDwBl37svvvgCd+/exYULF2Bubo5Lly7By8tLYbIvzcrKSq7CcF5eHh4/flzu8gYGBsjJyRHvp6en\nV3l/KxIQECAesDZt2gRA6Hk3a9YsuYNCSkoKunfvDisrK6Snp+PZs2diskhJSREPCh07dsT169fx\n22+/ISAgAK6urrhz5w727t0rvo6ZmRn09fXxzz//vHBybNGiBW7fvq3wOX19fWzfvl2cNqBv376Q\nSCRo1qwZIiIiMGzYMPE9LRYaGootW7ZAKpXCzc1NTELNmzfHqFGjsHLlSoWv1atXL/Tq1QsFBQX4\n/PPP8c477+D06dOVxm9lZYXk5GTxfvH7X9x7sCItW7bExIkTsWLFCpw/fx62trbIycmBiYkJ9uzZ\nozCBlv48GhgYAAByc3PF70BVPlN3796Vu1/8uVBGZd9db29vxMbGlnlc0XGzPHWq15MymjRpglmz\nZmHMmDHir7OHDx9i6NChsLa2lut2FhYWhh9//BG//PILwsLCxMffe+89LFiwQCw+mJ2djR07dpT7\nmjk5OdDR0UGTJk1QVFSERYsWvVBPF39/f8hkMnz77bcoKCgAEeH69euIj49XeluGhoYIDQ3F5MmT\nxTOs2NjYMr+OnZyc0L59e3z22WfiATQ5ORkxMTGVvkbLli3RuXNnTJw4ETk5OZBKpXLr9e/fH/Hx\n8VixYgWGDx9e7nZyc3Ohr68PExMTZGZmir9CSyov6fbv3x+//fYb4uLiIJVKMW/evAp7lnh7e+PX\nX3/Fs2fPkJycjLVr11a4j1RBV9dmzZohMTGxwvXv3buH7777DgCwc+dOXLhwAX369IGzszM8PDww\nY8YMSKVSXL9+HWvXrhV/sBgZGaFt27ZYuXIl/P39AQCdOnXCmjVrxPuGhoYYNmwYpkyZIg6cevDg\nAQ4fPlxhTCWNHDkSCxcuxJUrVwAIUwMUF+b09vZGdHQ0ZDIZjhw5gqNHj1a6vSFDhuDAgQNYs2YN\nwsPDxceHDRuG3377DUePHgURobCwEDExMbh37x7S0tKwb98+5OfnQ09PD0ZGRnK9yCoyePBgREZG\n4tq1aygqKsLMmTPh7u4u/mCrTG5uLnR1ddGkSRPk5eXhiy++qHD50u958+bNYWFhgY0bN4KIEB0d\njWvXrlX6uuV9LpRRne9uVWltogCAadOmYe7cufjggw9gYmICb29vWFhY4PDhw9DX1xeXe/PNN3Hz\n5k00b94cnp6e4uNDhw7Fe++9h169eqFx48ZwcXGRSxSls3fv3r3x+uuvo1WrVnB0dIREIoG9vb3c\n8iXXKe9Xsq6uLg4cOIDDhw/DysoKTZs2xfDhw/Hvv/8q3I6ibZW8v3LlStja2sLFxQVNmzbF5MmT\nxYNeyeW2bduGe/fuwcHBAY0bN0bfvn3F2lyVvebWrVuRlZUFGxsbmJubY/HixeJzhoaGCA4ORlJS\nEoKDgxXuMyB0oX369ClMTU3x6quvolu3bhW+ZsmY2rVrh6+//hpvvPEGWrRogUaNGimsOFxs2rRp\nkEqlMDc3x9ChQxEaGlrhe1PytUr/Lb744gsMHjwYpqam2L59u8LX69ChAy5dugQzMzNMmDABmzdv\nFn/tbt++HQkJCWjatClef/11TJ8+XRzdDQg/HIqKisQRw/7+/sjOzpa7FPntt9/C1NQUrq6uaNy4\nMfz9/XHp0qVy96e0ESNGYNy4cejVqxdMTEzwxhtviL+Ily9fjm3btsHU1BRRUVF46623yvxtSrO2\ntkanTp1w+vRpDB48WHy8devW2LJlCz777DM0adIE1tbWmD9/PmQyGaRSKb788ktYWlqicePGOHz4\nMNasWaMw3tLvQd++fTF9+nR069YNpqamOH/+PH755Zcq7//bb7+NFi1awMrKSpyauaJ1xo8fj02b\nNqFJkyb46KOPIJFI8P3332P+/PkwMzPD+fPn0blz53LjLX7s1VdfLfdzUdH+lt6nir67qqARtZ5m\nzZqFLVu2QEdHBx4eHtiwYQOMjIzwzTffIDIyEjKZDD179sTXX3+t7lDZC5o3bx7++ecfbNiwQd2h\n1LqoqCisW7dOPLNlrK5RexvFzZs3sXHjRly7dg0GBgYYPHgwtmzZAmtraxw4cABxcXHQ09NT2TVk\nVvuysrKwfv16sTowY6xuUfulp2bNmkFfXx85OTkoKipCbm4u7O3tERkZiY8//ljsqVE8ipDVLWvX\nroWNjQ0CAwPFa+r1TU2VEmGstmjEpafvv/8eU6ZMQcOGDREUFISNGzfC1dUVISEh2L17Nxo2bIiI\niAh06tRJ3aEyxli9o/ZLT7du3cKyZcuQlJSEJk2aYODAgWIPi+L6TLGxsQgJCUFycrLcLzNnZ2fc\nunVLjdEzxljd4+TkpNRU0mq/9HTu3Dl06tRJHBAUHByMkydPws7OTuwh0759exgYGODhw4dy6966\ndUvstqiNt1mzZqk9Bt4/3r/6tm/1Yf+U/YGt9kTh7OwslsomIhw6dAjOzs7o3bs3jhw5AgC4ceMG\ncnNzYWlpqeZoGWOs/lH7paf27dtjwIAB8PLygo6ODnx8fPDhhx9CV1cXo0aNEkeDRkVFVXnwDWOM\nMdXRiMbsFyWRSFCHw6/UsWPH5OrXaBvev7pLm/cN0P79U/bYyYmCMcbqGWWPnXwthzHGWIU4UTDG\nGKuQyhqzpVIpdHV1VbU5xpiGkkqBf/8FHj8Wbunpz/9f+paeLiyrpwcYGgINGwr/lvy/oseUeV7R\nsnp6AA+GVx2VtVG0atUKISEhGDlyJNzc3FSxyUpxGwVj1SOTARkZZQ/u5R30Hz8Wlm/SBDA3B8zM\nhH8V3YqfMzUVksuzZ0Be3vN/q/P/yp6XyaqfgKqaoBo1AkrMKVQnqK0xOzMzEz/99BOioqIglUox\natQohIaGonHjxpWuW171WACIiIjAtGnT8PjxYzRr1kw+eE4UjImIgKdPyz/AK3r8yRPAxKTqB/3i\nA38Fk+VphKKi58lDFYmnov9bWwMnT6p7j5WjEb2ejh07hvDwcPz7778ICQnBjBkzyp1A5ObNm+jR\no4dc9dgePXpg9OjRSElJwbvvvovr168jLi6OEwWrN4iArCzlDvrp6YCRkXIH/WbNgBJTs7B6Qtlj\np8p+FxQVFWHPnj1Yv349kpKSMGXKFISFheHUqVN46623cPXqVYXrlaweq6OjI87rCghzDi9atKjM\nRCmMaYPHj4ETJ4Rfo3fulD3wN2ig+OBubg74+JR93MwM+G9GTsZUSmWJok2bNggICMD06dPlqrwG\nBwfj2LFj5a7XrFkzTJkyBfb29mL12O7du+P333+Hra0tvLy8VBUiY2p1/z7w55/A8ePCLTUV6NQJ\n6NoV6NCh7EHf0FDdETMmUNmlp+zsbHFScWXcunULffv2xYkTJ8Tqsf3798eqVavwxx9/oHHjxmjZ\nsiX++uuvMnNS8KUnpsmSk58nhj//FM4UunYF/PwAf3/g5Zc1/1o/005qu/T0/vvvY+XKlWLjdUZG\nBiZOnIgff/yxwvVKVo8FhDOQH3/8EUlJSfD29gYApKamom3btjh37lyZwoCzZ88W/x8QEKDVw+6Z\n5iICbt6UP2N49kxICH5+wIQJgIcHwOXKmDocO3aswis7lVHZGYWPjw/Onz9f6WOlxcbGYuTIkYiN\njYWhoSHefvtteHl5YcqUKeIyLVu25MZsplGIgCtX5M8YdHSeJwZ/f8DFhfvyM82ktjOK/Px8ZGZm\nimcUT58+RV5eXqXrlVc9tiSeRpKpm1QK/P3388Rw4oTQrdTfHwgKAhYsAFq25MTAtJPKzii+++47\nREREYPDgwSAibN26FVOmTMGYMWNUsXmF+IyC1ZTCQiA+/nliiIkBrKyenzH4+QF2duqOkrEXo9Zx\nFPHx8Th8+DAkEgm6desGHx8fVW1aIU4UTFXy84Fz554nhjNnAEdH+cRgZaXuKBlTDbUmioKCAjx8\n+BAymUy8XGRvb6+qzZfBiYK9qNxc4PTp54nhr7+Al156nhi6dhUGozGmjdSWKBYvXowFCxbA2tpa\nrjjgxYsXVbF5hThRsKrKzBQuHxUnhgsXAG/v54mhc2egCtVmGNMKaksUDg4OiI+PLzPWoSZxomDl\nefJEaHAuTgzXrgHt2j1PDB07CuUuGKuP1NbrqXXr1jA1NVXV5hhTysOHQlIoTgxJSUIy8PMDli4F\nXnlFKInBGFOeyhKFvb09/P398cYbb8Dgv4IzEokEkydPVtVLMCZKTX0+fuH4ceDBA6BLF+GMITJS\nqIXExe4YUw2VJgp7e3sUFBSgoKBAqXUVlRn/4osvsH//fgDCXBc//vhjrV7WYpqDCEhMlE8MWVnP\neyONHQt4eQE8bxZjNUPlZcZLDrqrivLKjDs5OcHPzw86Ojr45JNPkJ+fj6VLl8oHz20UWo0I2L0b\nmDVLKKjn7//89tJLXA6DsRel7LFTZV+148ePw9nZGe7u7gCAS5cu4b333qt0vZJlxouKisQy4wEB\nAdD570jQuXNn3L17V1WhMg1HBPzxB/Dqq8DnnwMzZwL37gE//QS8/z7g5sZJgrHapLKv28SJE3Hk\nyBGYm5sDADw8PHDq1KlK1ytZZrxFixZo2rQpunfvLrfM999/z3NS1BPHjgmXkyZOBCZPBhISgH79\nuDQGY+qksjYKIiozuK4qNZpu3bqFZcuWISkpSSwzHh0djfDwcADAl19+CQMDA/F+aVw9VjucOgXM\nmCGU5p41CwgL4zYHxlSlutVjVZYo7OzsEBMTA0CY7W7NmjVo1apVpespKjN+8uRJhIeH48cff8Se\nPXtw5MiRctcvmShY3fPXX8KlpcuXhX+HD+feSoypWukf0XPmzFFqfZVdeoqMjERERARu3boFMzMz\nHD16FJGRkZWu5+zsjDNnzuDZs2cgIhw6dAjOzs7Yv38/Fi1ahJ07d8KQp/rSOn//LVxS6tcP6NMH\nuHEDGD2akwRjmkjlvZ5exOzZsxEdHS2WGV+/fj28vLxQUFAgzkHRsWNHrFq1Sm497vVU91y9Klxa\n+vNP4JNPgDFjgIYN1R0VY/VLrZfwWLhwIT7++GOMHz++TBASiQQrVqyozuYrxImi7rh5E5gzBzhw\nAJgyBRg3DmjUSN1RMVY/1XoJDzc3NwBA27Zt5RqvixMFq9+SkoB584Dffxd6Mq1cycX3GKtrNOLS\n04viMwrNdfcu8OWXwM8/C2MfpkwBuBQYY5pBbQPuunXrhszMTPF+RkYGAgMDVbV5Vkc8eAB89JFQ\nUsPYGLh+HZg/n5MEY3WZyhLFkydP5Ep3NG3aFI8fP1bV5pmGe/wYmD4d+G9gPi5fBhYtAv4bf8kY\nq8NUliikUqlcmY3U1FQUFhaqavNMQ2VkCAPlXFyEQn0XLgDLlgHW1uqOjDGmKiobcDd37ly0a9cO\n3bt3BxHhyJEjZbqzlkdR9di8vDwMHjwYDx8+RPPmzfHzzz+jadOmqgqXVVNmJrB8ObBiBfDmm0Bc\nnDDHNGNM+6i0Mfv+/fs4efIkJBIJunbtCqsqzEZfXvXYhIQEODk54aOPPsKyZcuQmJiI5cuXywfP\njdm1LidH6Lm0eDEQFCSMpm7dWt1RMcaUUeuN2VevXgUAxMXF4f79+2jVqhVatmyJu3fvIj4+vtL1\nFVWPtbe3x969ezFs2DAAwNChQ7Fnz57qhsqqIS9PuKTk7CyU3Th2DNi4kZMEY/VBtS89LVmyBGvX\nrsWUKVMUjps4evRoheuXrB7bsGFDBAUFITAwEI8ePRLrP5mbmyMtLa26obIXUFAArFsndHVt1w7Y\nvx/w9lZ3VIyx2lTtRFHcBfaHH36oUhHA0hRVj920aVN1w2LVVFgIbNggDJZzdQV++w1o317dUTHG\n1KHaiWLBggUYNGgQBgwYUKVLTaUpqh4bExMDCwsLPH78GObm5nj06BEsLS0Vrs9lxlVLKgU2bxbK\nbTg4CP/v1EndUTHGqqO6Zcar3ZgdEBAAfX19xMbGomvXrvIbl0iwc+fOCtePjY3FyJEjERsbC0ND\nQ7z99tvw9PREcnKy2Ji9dOlSJCYmlqkbxY3ZqiOTAdu3CwX7zMyEM4nXXlN3VIyxmlDrRQELCgoQ\nHx+PYcOGITIyUu7FJRIJ/P39K91G6eqxUVFRyM3NFbvHWltbY+vWrWW6x3KiqD4ioQ7TrFlAgwZC\ngujRg2eUY0yb1XqiGDZsGDZu3IhFixZh+vTp1dmU0jhRvDgiYN8+oXurVArMnSvMC8EJgjHtV+uJ\nwsXFBUePHkXPnj0VXgMrnk+iJnCiUB4RcOSIMJr66VMhQfTvD+iobIw+Y0zT1XqZ8bFjx6Jbt264\nffs22rZtW+b5xMTE6r4EU5ETJ4QEce8eMHs2MHgwz0vNGKucykZmjx07FmvWrFHFpqqMzyiq5uxZ\nIUH884/QFjF0KKCnsuItjLG6ptYvPZV06NAhJCUl4Z133sHjx4+RlZWFli1bqmrzZXCiqNj580Ib\nREIC8MUXwMiRgIGBuqNijKmb2hLFp59+iosXL+LGjRu4ceMGHj58iDfffBNnz55VxeYV4kSh2KVL\nwpnD6dPAp58C774LGBqqOyrGmKZQ28RFO3bswM6dO9Hov4mQrayskJ+fr6rNsyq4fh0ICwO6dQM6\ndhTmqR4/npMEY6x6VJYo9PX1oVOi60xeXh4KCgoqXe/69evw8fERb02aNMHy5csRExMDb29veHh4\nwNvbG6dOnVJVqFrnzh3g7beBLl0ADw8hQUydChgZqTsyxpg2UFmT5oABAzBmzBhkZGTghx9+wPr1\n6zFixIhK13NxccH58+cBADKZDDY2Nujfvz/CwsKwaNEiBAUFYd++ffj4449x4sQJVYWrFQoLgaVL\nhZnk3n9faKzmKTsYY6qmskQxc+ZM7Ny5E/r6+oiPj8f06dPRt29fpbZx6NAhODs7w97eHnZ2dnj6\n9CkAYf5tBwcHVYWqFf78U0gO9vZCryYnJ3VHxBjTVirt9VRdo0aNQrt27fDBBx8gOTkZXbp0gUQi\ngUwmw+nTp2FnZye3fH1szE5LA6ZNEwbNLVsGBAfzaGrGmHJqfcCdqhQUFGDXrl1YuHAhAGD06NFY\nsWIF+vfvj23btmHUqFE4ePBgmfXqS/VYqRRYu1bo7jp8OHDlCmBiou6oGGN1gdqrx6rK77//jtWr\nV2P//v0AAGNjY2RnZwMAiAgmJibi/WL15YwiPl64zKSvD6xeDXh6qjsixlhdprbusdW1ZcsWhIaG\nivcdHBxw/PhxAMCRI0dqdOCepnr6VOje2qsXMHas0C7BSYIxVtuqfUbhWcGRSyKR4O+//650Gzk5\nOXBwcEBiYiJM/ruecurUKXzwwQcoLCxEgwYNsGbNGrzyyitltq+NZxREwJYtQhfXPn2Ar74S5ohg\njDFVqPWR2UlJSRU+7+joWJ3NV0gbE8W1a8CHHwLp6cJlpo4d1R0RY0zbqLXWU23TpkSRmwt8+SXw\n3XdCXaZx47hwH2OsZtR6rydjY2NIyumfKZFIkJmZWd2X0Hq7dwttER06ABcuADY26o6IMcae4zMK\nNbpzB5g4USjit3KlMAUpY4zVNLX2eiIi3Lt3D3fu3BFvrKyCAmDhQsDHR7hdvMhJgjGmuVR2FXzb\ntsg7+z8AAA/GSURBVG2YPn060tLSYGlpieTkZLi6uuLy5cuqegmtcPw48MEHQumNc+e49AZjTPOp\n7IxixowZiI2NRZs2bZCYmIhjx47h1VdfrXQ9RdVjV6xYAQD45ptv4O3tDU9PT0ybNk1VoapFWhow\nYoQwu9zcucDevZwkGGN1g8rOKBo1agRzc3MUFhaCiODn54fx48dXul551WP37NmDAwcOIC4uDnp6\nekhPT1dVqLVKKgW+/14ovTFiBJfeYIzVPSpLFI0bN0Zubi46deqE0NBQWFpaQl9fX6ltFFePtbOz\nw/jx4/Hxxx9D778+omZ1cMRZXJxQesPAQCjix6OqGWN1kcouPe3evRsNGjTAihUr8Prrr8PZ2RkH\nDhxQahs//fSTWMbj+vXrOHDgAF5++WV07NixTk1clJEhdHd94w0hUXDpDcZYXaaS7rFSqRQ9evTA\n4cOHX3gbBQUFsLGxwZUrV2BhYQEXFxf07NkTy5cvR2xsLEJCQpCcnCw3ZkPTuscSAZs3C2XAufQG\nY0xTqaXMuK6uLvT09JCVlSXWalLWvn370LZtW1hYWAAA7OzsEBwcDABo3749DAwM8PDhQ1hbW8ut\npyllxq9dE3ozPXkC/PorUIV2fMYYqxUaU2b8zTffxPnz5xEYGIhGjRoJG5dIxB5MlRkyZAh69eol\nTp+6dOlSZGRkYM6cObhx4wYCAgKQmpoqNy+3JpxRlCy9MWOGUKeJS28wxjSZ2mo9RUVFiQEAwuA7\niURSpXmzFVWPLSwsxKhRo8QeUUuWLEGPUqPS1J0oSpbeWLIEaNFCbaEwxliVqbUoYFZWFu7cuQN3\nd3dVbbJC6koUyclC6Y0rV4TSG4GBtR4CY4y9MLWV8Ni2bRt8fHzQu3dvAMClS5fE/2uL4tIbbdsK\nt7//5iTBGNN+KruaPnv2bPz111947bXXAAAeHh5ISUlR1ebVrrj0hoMDcPYsj6pmjNUfKksUenp6\naNq0qdxjRUVFqtq82jx8KHR3PXYMWLYM6N8fKKeqOmOMaSWVXXpyc3NDdHQ0ioqKkJiYiGnTpqF9\n+/aq2nytk0qFGeY8PABLS6E9IjiYkwRjrP5RWaJYu3Yt4uLiQETo27cvZDIZVq9erarN16q4OGEK\n0uhoofTG4sWAsbG6o2KMMfVQWa+n+Ph4+Pr6qmJTVabqXk8ZGcI0pNu2Af/7n1DET0elM3Ywxpj6\nqa3X0+TJk/HSSy9hxowZuHTpUpXXq6jMOABERERAR0cHT548UVWoZRAJZw9ubkLPpitXgJEjOUkw\nxhig4nEU9+/fx9atW7F161ZkZmZi0KBBmDFjRpXXLy4zfu7cOdjZ2SElJQXvvvsurl+/jri4ODRr\n1kw+eBWcUVy9KoymfvIEWLOGS28wxrSfWqdCbd68OSZOnIg1a9bA29sbc+fOVWr9Q4cOwcnJCXZ2\ndgCEs5RFixapMkRRbi7w2WdA167AW28Bf/3FSYIxxhRRWaK4cuUKZs+eDQ8PD4wbNw6dOnXC3bt3\nldrGTz/9hLCwMADA77//DltbW3h5eakqRNGuXYC7O3D7tjBobuJErs/EGGPlUdnhcdSoURgyZAj+\n+OMPtHiBokcFBQXYtWsXFi5ciNzcXCxYsAAHDx4Uny/vNEmZ6rHJycCECcLlpu+/51HVjLH6QWOq\nx2ZlZeHatWsAAFdXVxgr2Z/0999/x+rVq7F//35cvHgR3bt3h5GREQAgNTVVbLuwtLR8HnwVr7MV\nFAhF+77+GvjoI2EAnaGhUuExxpjWqPX5KAoLCzFx4kRs3boVzs7OAICbN29i4MCBWLFiRZWnQ92y\nZYs4u52npycePnwoPteyZUuFjdlV9fixMDbi3DkuvcEYY8qqdhvFtGnToKOjg9TUVJw5cwZnzpxB\nSkoK9PX1MXXq1CptIycnB4cOHRInKipNUs3h0C1aCGMjOEkwxpjyqn3pyd3dHRcvXpSbUAgQurp6\nenri8uXL1QqwIuqej4IxxuqiWu8eq6OjUyZJVPQ4Y4yxuqXaR/JWrVph69atZR7fvn07WrZsWd3N\nM8YYU7NqX3pKTU1Fr1690Lx5c7Rr1w5EhLi4ONy/fx/79u2Dra2tqmItgy89McaY8tQyFWpRURH+\n+OMPXLx4ERKJBJ6enujRowd0dXWru+kKcaJgjDHlqXXO7NrGiYIxxpRX6+Moquv69esYMmSIeP/2\n7duYO3cukpOTsX//fgBCO8iPP/4IMzMzdYXJGGP1ltq7Jbm4uOD8+fM4f/484uLiYGRkhODgYPTt\n2xeXLl3ClStX4OHhgfnz56s71FpXnSH3dQHvX92lzfsGaP/+KUvtiaKkktVjX3vtNbF7befOnZUu\nMKgNtP3DyvtXd2nzvgHav3/K0qhEUbJ6bEnff/893nrrLTVExBhjTGMSRXH12IEDB8o9/uWXX8LA\nwADh4eFqiowxxuo50hA7duygoKAguceioqKoY8eO9OzZM4XrODk5EQC+8Y1vfOObEjcnJyeljs9q\n7/VUrGT1WADYv38/Fi1ahOPHj8OwnJrgN2/erK3wGGOs3tKIcRQ5OTlwcHBAYmIiTExMAACtW7dG\nQUGBWFq8Y8eOWLVqlTrDZIyxekkjEgVjjDHNpTGN2ZXJy8tD+/bt4ePjgzZt2mDSpEkAgCdPniAw\nMBBeXl4ICgpCRkaGmiNVXnn7Nnv2bNja2sLHxwc+Pj7iAMS6SiqVwsfHB3379gWgHe9dSaX3T5ve\nP0dHR3h5ecHHxwevvPIKAO16/xTtn7a8fxkZGRg4cCC8vb3h6uqKM2fOKP/evVDLs5rk5uYSEVFh\nYSF16NCBjhw5QuPGjaOlS5cSEdHSpUtpwoQJ6gzxhSnat9mzZ1NERISaI1OdiIgICgsLo759+xIR\nac17V6z0/mnT++fo6Ejp6elyj2nT+6do/7Tl/RswYABt3ryZiIikUik9ffpU6feuzpxRAPh/e/cX\n0tT/BnD8PfviFwsLYk5LhkgXav6bLg3FJPsDqTi7iHT5h5IgKSsypKCbSogipJsMClQwC0O6MdPA\n0mmm1ipFQyyVyj+FmUEJa5S570W4X/ad+6VZ+249ryt3dnb2PHt2eHY+nvM5eHh4AF9Ppf3y5Qsq\nlYra2lqysrIAyMzM5ObNm44Mcd6+z83b2xvAZeayGh4epra2lt27d1tzcpXage38LBaLy9QP/v1d\ndKX6ge19zdnrNz4+Tmdnp/VEITc3N5YuXTrn2jlVo5iamkKj0eDt7U1CQgLBwcGMjY1Z54BSKpW8\nefPGwVHOz/e5rV69GoDi4mKCgoLIzMzk3bt3Do5y/g4dOsTZs2dn3MzKVWoHtvNTKBQuUz+FQmEd\nqjh//jzgWvWzlR84//7X19eHl5cX27dvJyQkhOzsbCYmJuZcO6dqFG5ubnR2djI8PExzczONjY2O\nDmnBfJ+bwWBg3759DAwM0NPTw6pVqzhw4ICjw5yXmpoaVCoVERERTv8LzZbZ8nOV+gG0t7fz+PFj\n7ty5Q1lZGbdv33Z0SAvKVn6uUL+pqSmMRiMFBQU8efKE5cuXU1hYOOftOFWjmLZs2TKSk5O5f/8+\nXl5evH37Fvj6C0elUjk4up8znVt7eztKpRKFQoFCoWDPnj0YjUZHhzcvra2tVFdX4+/vj16vp6Gh\ngaysLJepna38srOzXaZ+gLU2Xl5ebNu2DaPR6DL1A9v5uUL91Go1vr6+REVFAbBt2zY6OztRqVRz\nqp3TNIrx8XEmJiYA+PjxI/X19YSGhpKUlERFRQUAFRUVJCUlOTLMeZktt7GxMes6169fJzg42FEh\n/pRTp04xNDTE8+fPqaysZMOGDVy+fNklage28ysvL59xOO/M9TOZTJhMJuDrNU+3bt0iODjYZeo3\nW36usP+p1WqUSiXPnj0Dvk68GhQURGJi4pxq95+5Mvv/efXqFdnZ2VgsFsxmMzt27CA5OZmYmBjS\n0tIoLS3Fx8fH5v27/+tmyy0rK4uuri4+ffqEn58fJSUljg51QSgUCgBOnDjh9LX7nsViseaXn59P\nd3e309dvdHSUrVu3olAoMJlMpKeno9PpiIuLc4n6zZafq+x/JSUlZGRkYDKZ8PPz48qVK1gsljnV\nTi64E0IIYZfTDD0JIYRwDGkUQggh7JJGIYQQwi5pFEIIIeySRiGEEMIuaRRCCCHskkYh/igvXrwg\nNDR0xrLjx49TVFRk93WPHj3i4MGDADQ1NdHW1mZzvZGRETZv3kxwcDAhISFs2bJlYQKfha18hFho\nTnPBnRC/yvQFcvZotVq0Wi0AjY2NeHp6EhMT86/1jh07hk6nY//+/QD09vYubLBCOIAcUQjB/5rF\n+vXrOXr0KLGxsfj7+9PQ0ACAwWAgJSWFly9fcvHiRc6dO0dERAQtLS0ztjM2Noavr6/1cWBgoPX1\n8fHx6HQ6AgIC2LVrl3UCwerqarRaLaGhoaSmplqnc2lrayMmJoawsDASEhIYGRmxLg8KCiIqKkpu\nDyx+C2kUQnxjumG0trZy4cIFTp48OeN5Pz8/cnNzyc/Pp6Ojg7i4uBnP7927l5ycHDZu3EhhYSHD\nw8PW54xGI8XFxfT29vL69WsqKysZHR3l9OnTtLS00N3dTWxsLGfOnOHz58/k5eVRU1NDV1cXubm5\nHDlyBICdO3dSWlqK0Wjkr79kUED8evItE3+U2YaZvl2empoKQGRkJENDQzbXn23mm+TkZPr7+6mv\nr6euro7IyEi6u7sBiI6ORq1WA5CWlkZLSwvu7u709fURGxsLfL1x1dq1a+nq6qK/v59NmzYBWG9m\nNTY2htlstg576fV6bty4MdePQYg5kUYh/ihLliyxDu1Me//+PStXrrQ+/vvvvwFYtGgRU1NTc34P\npVKJXq9Hr9eTkpKCwWDAx8dnRjOanjzQYrGQmJhIeXn5jG08fPiQ8PBwmpubZyz/dkbT6e0I8avJ\n0JP4oyiVSjw9Pa1nLX348IG6ujri4+N/eBseHh7Waam/d/fuXcxmMwATExMMDAygVquxWCw8ePCA\noaEhLBYLVVVVxMXFsW7dOhobGxkcHATAbDYzMDBAWFgYg4ODdHR0ADA5OcnTp0/x8vJi8eLFtLe3\nA3Dt2rV5fxZC/ChpFOKPU1FRweHDh9FoNMTGxlJQUEBAQIDNdb89Cpj+OyUlhatXr6LRaLh3796M\n9dva2tBqtYSHh7NmzRoyMjKsw0pRUVHk5eURGBjIihUrSE9Px9vbm0uXLqHT6dBoNERHR9PT04O7\nuztVVVXk5uai0WjQaDQ0NTUBUFZWRk5ODtHR0UxOTv7QWVtC/AyZZlyI38BgMFBUVCT/TxBOSY4o\nhPgNpm+pKYQzkiMKIYQQdskRhRBCCLukUQghhLBLGoUQQgi7pFEIIYSwSxqFEEIIu6RRCCGEsOsf\nY/zsNsh4AtcAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 14.7.1 pageno : 478" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math \n", "#initialisation of variables\n", "pe= 126. \t\t\t#ft\n", "ve=16.\t\t\t#ft/sec\n", "g= 32.2 \t\t\t#ft/sec**2\n", "w= 62.3 \t\t\t#lbf/ft**3\n", "Q= 64. \t\t\t#ft**3/sec\n", "n= 0.79\n", "vo= 8. \t\t\t#ft/sec\n", "h= 9. \t\t\t#ft\n", "nh= 0.82\n", "\t\t\t\n", "#CALCULATIONS\n", "H= pe+(ve**2/(2*g))+13.\n", "Ps= H*w*Q*n/550.\n", "W= pe+(ve**2/(2.*g))+4-((vo**2/(2*g))-h)\n", "W1= nh*H\n", "dh= W-W1\n", "nm= n/nh\n", "e= Ps*((1/nm)-1)\n", "\t\t\t\n", "#RESULTS\n", "print ' Total head= %.f ft'%(H)\n", "print ' horse power= %.f hp'%(Ps)\n", "print ' head lost in friction= %.f ft'%(dh)\n", "print ' horse power lost= %.f h.p'%(e)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Total head= 143 ft\n", " horse power= 819 hp\n", " head lost in friction= 25 ft\n", " horse power lost= 31 h.p\n" ] } ], "prompt_number": 38 } ], "metadata": {} } ] }