{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8: The Tension Test" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Example 8.1, Standard properties of the material, Page No. 281" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Ultimate Tensile Strength = 92363.2 psi\n", "0.2 percent offset yield strength = 74889.1 psi\n", "Breaking Stress = 80880.2 psi\n", "Elongation = 26.5 percent\n", "Reduction of Area = 61.092 percent\n", "\n", "\n", "Note: Slight Computational Errors in book\n" ] } ], "source": [ "\n", "from math import pi\n", "\n", "#variable declaration\n", "D=0.505;\n", "Lo=2;\n", "Lf=2.53;\n", "Py=15000;\n", "Pmax=18500;\n", "Pf=16200;\n", "D_f=0.315;\n", "\n", "#calculation\n", "A0=pi*D**2/4;\n", "Af=pi*D_f**2/4;\n", "s_u=Pmax/A0;\n", "s0=Py/A0;\n", "s_f=Pf/A0;\n", "e_f=(Lf-Lo)/Lo;\n", "q=(A0-Af)/A0;\n", "\n", "#result\n", "print('\\nUltimate Tensile Strength = %g psi\\n0.2 percent offset yield strength = %g psi\\nBreaking Stress = %g psi\\nElongation = %g percent\\nReduction of Area = %g percent\\n\\n\\nNote: Slight Computational Errors in book')%(s_u,s0,s_f,e_f*100,q*100);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 8.2, True Strain, Page No. 288" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "True Strain to fracture using changes in length = 0.405465\n", "True Strain to fracture using changes in area = 0.405465\n", "\n", "\n", "\n", "For More ductile metals\n", "True Strain to fracture using changes in length = 0.729961\n", "True Strain to fracture using changes in diameter = 0.940007\n" ] } ], "source": [ "\n", "from math import log\n", "\n", "#case 1\n", "#variable declaration\n", "Af=100.0;\n", "Lf1=60.0;\n", "A0=150.0;\n", "L01=40.0;\n", "Lf=83.0;\n", "L0=40.0;\n", "Df=8.0;\n", "D0=12.8;\n", "\n", "#calculation\n", "L1=float (Lf1/L01);\n", "A1=float (A0/Af);\n", "ef11=log(L1);\n", "ef21=log(A1);\n", "L2=(Lf/L0);\n", "D2=D0/Df;5\n", "ef12=log(L2);\n", "ef22=2*log(D2);\n", "\n", "#result\n", "print('\\nTrue Strain to fracture using changes in length = %g\\nTrue Strain to fracture using changes in area = %g')%(ef11,ef21);\n", "print('\\n\\n\\nFor More ductile metals\\nTrue Strain to fracture using changes in length = %g\\nTrue Strain to fracture using changes in diameter = %g')%(ef12,ef22);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 8.3, Ultimate Tensile Strength, Page No. 290" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ultimate Tensile Strength = 99729.2 psi\n" ] } ], "source": [ "\n", "\n", "from math import exp\n", "\n", "#variable declaration\n", "def sigma(e):\n", " return 200000*e**0.33;\n", "E_u=0.33;\n", "\n", "#calculation\n", "sigma_u=sigma(E_u);\n", "s_u=sigma_u/exp(E_u);\n", "\n", "#result\n", "print('Ultimate Tensile Strength = %g psi')%(s_u);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 8.4, Effect of Strain Rate, Page No. 298" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "At 70deg F\n", "\n", "sigma_a = 10.2 ksi\n", "sigma_b = 13.8229 ksi\n", "sigma_b/sigma_a = 1.35519\n", "\n", "\n", "\n", "At 825deg F\n", "\n", "sigma_a = 2.1 ksi\n", "sigma_b = 5.54906 ksi\n", "sigma_b/sigma_a = 2.64241\n", "\n" ] } ], "source": [ "\n", "\n", "#variable declaration\n", "C_70=10.2;\n", "C_825=2.1;\n", "m_70=0.066;\n", "m_825=0.211;\n", "e1=1;\n", "e2=100;\n", "\n", "#calculation 1\n", "print('\\nAt 70deg F\\n');\n", "sigma_a=C_70*e1**m_70;\n", "sigma_b=C_70*e2**m_70;\n", "\n", "#result 1\n", "print('sigma_a = %g ksi\\nsigma_b = %g ksi\\nsigma_b/sigma_a = %g\\n')%(sigma_a,sigma_b,sigma_b/sigma_a);\n", "\n", "\n", "#calculation 2\n", "print('\\n\\nAt 825deg F\\n');\n", "sigma_a=C_825*e1**m_825;\n", "sigma_b=C_825*e2**m_825;\n", "\n", "#result 2\n", "print('sigma_a = %g ksi\\nsigma_b = %g ksi\\nsigma_b/sigma_a = %g\\n')%(sigma_a,sigma_b,sigma_b/sigma_a);\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }