{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 17: Rolling of Metals" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Example 17.1, Forces in rolling, Page No. 596" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Maximum possible reduction when mu is 0.08 = 0.0768 in\n", "\n", "Maximum possible reduction when mu is 0.5 = 3 in\n" ] } ], "source": [ "\n", "from math import atan\n", "\n", "#variable declaration\n", "mu1=0.08;\n", "mu2=0.5;\n", "R=12;\n", "\n", "#calculation\n", "alpha=atan(mu1);\n", "dh1=mu1**2*R;\n", "dh2=mu2**2*R;\n", "\n", "#result\n", "print('\\nMaximum possible reduction when mu is 0.08 = %g in\\n')%(dh1);\n", "print('Maximum possible reduction when mu is 0.5 = %g in')%(dh2);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 17.2, Rolling Load, Page No. 598" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Rolling Load = 3039.51 kips\n", "\n", "Rolling Load if sticking friction occurs = 5509.54 kips\n" ] } ], "source": [ "\n", "from math import sqrt\n", "from math import exp\n", "\n", "#variable declaration\n", "h0=1.5;\n", "mu=0.3;\n", "D=36;\n", "s_en=20;\n", "s_ex=30;\n", "\n", "#calculation\n", "h1=h0-0.3*h0;\n", "dh=h0-h1;\n", "h_=(h1+h0)/2;\n", "Lp=sqrt(D/2*dh);\n", "Q=mu*Lp/h_;\n", "sigma0=(s_en+s_ex)/2;\n", "P=sigma0*(exp(Q)-1)*s_ex*Lp/Q;\n", "Ps=sigma0*(Lp/(4*dh)+1)*s_ex*Lp;\n", "\n", "#result\n", "print('\\nRolling Load = %g kips')%(P);\n", "print('\\nRolling Load if sticking friction occurs = %g kips')%(Ps);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 17.3, Rolling Load, Page No. 599" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "P2 = 1410.35\n", "R2 = 18.6281\n" ] } ], "source": [ "\n", "\n", "from math import sqrt\n", "from math import exp\n", "\n", "#variable declaration\n", "h0=1.5;\n", "mu=0.3;\n", "D=36;\n", "s_en=20;\n", "s_ex=30;\n", "C=3.34*10**-4;\n", "P_=1357;\n", "\n", "#calculation\n", "h1=h0-0.3*h0;\n", "dh=h0-h1;\n", "h_=(h1+h0)/2;\n", "R=D/2;\n", "R1=R*(1+C*P_/(s_ex*(dh)));\n", "Lp=sqrt(R1*dh);\n", "Q=mu*Lp/h_;\n", "sigma0=(s_en+s_ex)/2;\n", "P2=sigma0*(exp(Q)-1)*s_ex*Lp/Q;\n", "P2=P2*0.45359 #conversion to tons\n", "R2=R*(1+C*P2/(s_ex*(dh)));\n", "\n", "#result\n", "print('\\nP2 = %g\\nR2 = %g')%(P2,R2);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 17.4, Torque and Horsepower, Page No. 614" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Rolling Load = 540.012\n", "Horsepower = 1713.63\n" ] } ], "source": [ "\n", "from math import sqrt\n", "from math import pi\n", "from math import log\n", "\n", "#variable declaration\n", "w=12;\n", "hi=0.8;\n", "hf=0.6;\n", "D=40;\n", "N=100;\n", "\n", "#calculation\n", "R=D/2;\n", "dh=abs(hf-hi);\n", "e1=log(hi/hf);\n", "r=(hi-hf)/hi;\n", "sigma=20*e1**0.2/1.2;\n", "Qp=1.5;\n", "P=2*sigma*w*sqrt(R*(hi-hf))*Qp/sqrt(3);\n", "a=0.5*sqrt(R*dh);\n", "a=a/12; #conversion to ft\n", "hp=4*pi*a*P*N*1000/33000;\n", "\n", "#result\n", "print('\\nRolling Load = %g\\nHorsepower = %g')%(P,hp);\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }