{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 15: Fundamentals of Metalworking" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 15.1, Mechanics of Metal Working, Page No. 506" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Enginering Strain = 1\n", "True Strain = 0.693147\n", "Reduction = 1\n", "\n", "\n", "Enginering Strain = -0.5\n", "True Strain = -0.693147\n", "Reduction = -1\n" ] } ], "source": [ "from math import log\n", "\n", "#For Bar which is double in length\n", "#variable declaration 1\n", "L2=2;\n", "L1=1;\n", "\n", "#calculation 1\n", "e=(L2-L1)/L1;\n", "e1=log(L2/L1);\n", "r=1-L1/L2;\n", "\n", "#result 1\n", "print('\\nEnginering Strain = %g\\nTrue Strain = %g\\nReduction = %g')%(e,e1,r);\n", "\n", "\n", "\n", "#For bar which is halved in length\n", "#variable declaration 2\n", "L1=1;\n", "L2=0.5;\n", "\n", "#calculation 2\n", "e=(L2-L1)/L1;\n", "e1=log(L2/L1);\n", "r=1-L1/L2;\n", "\n", "#result 2\n", "print('\\n\\nEnginering Strain = %g\\nTrue Strain = %g\\nReduction = %g')%(e,e1,r);\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "### Example 15.2, Mechanics of Metal Working, Page No. 511" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Plastic work done in 1st step = 39752.1 lb/in^2\n", "Plastic work done in 2nd step = 97934.8 lb/in^2\n", "\n" ] } ], "source": [ "\n", "from scipy.integrate import quad\n", "from math import log\n", "\n", "#variable declaration\n", "D0=25.0;\n", "D1=20.0;\n", "D2=15.0;\n", "def integrand(e):\n", " return 200000*e**0.5\n", "\n", "#calculation\n", "ep1=log((D0/D1)**2);\n", "U1,U1_err=quad(integrand,0,ep1);\n", "ep2=log((D1/D2)**2);\n", "U2,U2_err=quad(integrand,ep1,ep1+ep2);\n", "\n", "#result\n", "print('\\nPlastic work done in 1st step = %g lb/in^2\\nPlastic work done in 2nd step = %g lb/in^2\\n')%(U1,U2);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 15.3, Hodography, Page No. 517" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pressure = 2.88675\n" ] } ], "source": [ "\n", "from math import sin\n", "from math import radians\n", "\n", "#variable declaration\n", "alpha=60;\n", "\n", "#calculation\n", "r=radians(alpha);\n", "mu=1/sin(r);\n", "p_2k=mu*5/2;\n", "\n", "#result\n", "print('Pressure = %g')%(p_2k);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 15.4, Temperature in Metalworking, Page No. 526" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Temperature Rise for aluminium = 78.4808 C\n", "Temperature Rise for titanium = 162.686 C\n", "\n" ] } ], "source": [ "\n", "\n", "#variable declaration\n", "Al_s=200;\n", "Al_e=1;\n", "Al_p=2.69;\n", "Al_c=0.215;\n", "Ti_s=400;\n", "Ti_e=1;\n", "Ti_p=4.5;\n", "Ti_c=0.124;\n", "J=4.186;\n", "b=0.95;\n", "\n", "#calculation\n", "Al_Td=Al_s*Al_e*b/(Al_p*Al_c*J);\n", "Ti_Td=Ti_s*Ti_e*b/(Ti_p*Ti_c*J);\n", "\n", "#result\n", "print('\\nTemperature Rise for aluminium = %g C\\nTemperature Rise for titanium = %g C\\n')%(Al_Td,Ti_Td);\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 15.5, Friction and Lubrication, Page No. 546" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "For OD after deformation being 70 mm, Di = 22.3607 mm\n", "Precent change in inside diameter = 25.4644 percent\n", "Peak pressure = 1.93531\n", "\n", "\n", "\n", "\n", "For OD after deformation being 81.4 mm, Di = 35.0137 mm\n", "Precent change in inside diameter = -16.7124 percent\n", "Peak pressure = 1.17321\n" ] } ], "source": [ "\n", "\n", "from math import sqrt\n", "\n", "#variable declaration\n", "Do=60;\n", "Di=30;\n", "def1=70;\n", "def2=81.4;\n", "h=10;\n", "a=30;\n", "\n", "#calculation1\n", "di=sqrt((Do**2-Di**2)*2-def1**2);\n", "pr=(Di-di)/Di*100;\n", "m=0.27;\n", "p_s=1+2*m*a/(sqrt(3)*h);\n", "\n", "#result 1\n", "print('\\nFor OD after deformation being 70 mm, Di = %g mm\\nPrecent change in inside diameter = %g percent\\nPeak pressure = %g')%(di,pr,p_s);\n", "\n", "#calculation 2\n", "di=sqrt(def2**2-(Do**2-Di**2)*2);\n", "pr=(Di-di)/Di*100;\n", "m=0.05;\n", "p_s=1+2*m*a/(sqrt(3)*h);\n", "\n", "#result 2\n", "print('\\n\\n\\n\\nFor OD after deformation being 81.4 mm, Di = %g mm\\nPrecent change in inside diameter = %g percent\\nPeak pressure = %g')%(di,pr,p_s);\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }