{ "metadata": { "name": "CH20" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 20 : Magnetic Properties" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 20.1 Page No 84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "b_m=9.27*10**-24 #ampere*m**2 (Bohr Magneton)\n", "Na=6.023*10**23 #atoms/mol (Avogadro's No.)\n", "d=8.9*10**6 #g/m**3 (density)\n", "uo=4*math.pi*10**-7 #Permitivity of free space\n", "A=58.71 #g/mol (Atomic weigth of Nickel)\n", "N=d*Na/A #No. of atoms per cubic meter\n", "\n", "M=0.6*b_m*N #0.6= Bohr Magneton/atom\n", "B=uo*M\n", "\n", "print\"Saturation Magnetisation is \",M,\"A/m\"\n", "print\"Saturation Flux Density is \",round(B,2),\"Tesla\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Saturation Magnetisation is 507834.0 A/m\n", "Saturation Flux Density is 0.64 Tesla\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 20.2 Page No 88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "a=0.839*10**-9 #a is edge length in m\n", "b_m=9.27*10**-24 #ampere*m**2 (Bohr Magneton)\n", "nb=8*4 #8 is no. of Fe++ ions per unit cell\n", " #4 is Bohr magnetons per Fe++ ion\n", "M=nb*b_m/a**3 #M is Saturation magnetisation\n", "\n", "print\"Saturation Magnetisation is \",round(M,0),\"A/m\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Saturation Magnetisation is 502278.0 A/m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Design Example 20.1 Page No 88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Ms_Fe=5.25*10**5 #Required saturation Magnetisation\n", "b_m=9.27*10**-24 #ampere*m**2 (Bohr Magneton)\n", "a=0.839*10**-9 #a is edge length in m\n", "M=5*10**5 #From previous question result\n", "\n", "nb=Ms_Fe*a**3/b_m\n", "i=8 # No of Divalent ions per unit cell\n", "j=4 #4 is Bohr magnetons per Mn++ ion\n", "n=nb/(i)-j \n", " \n", "print\"Replacing percent of Fe++ with Mn++ would produce the required saturation magnetisation\",round(n*100,2)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Replacing percent of Fe++ with Mn++ would produce the required saturation magnetisation 18.1\n" ] } ], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }