{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#12: Mechanical Behaviour of Materials" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.1, Page number 12.115" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "yield strength is 86.026 kg/mm**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "sigma0=8.55;\n", "K=2.45; \n", "sigma=10**-3; #steel size(mm)\n", "\n", "#Calculation\n", "sigma=sigma0+(K/math.sqrt(sigma)); #yield strength\n", "\n", "#Result\n", "print \"yield strength is\",round(sigma,3),\"kg/mm**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.2, Page number 12.115" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "fracture strength is 0.211 GPa\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "E=70*10**9; #young's modulus(Pa)\n", "gama=1; #surface energy(joule/m**2)\n", "C=1*10**-6; #depth(m)\n", "\n", "#Calculation\n", "sigma_f=math.sqrt(2*E*gama/(math.pi*C)); #fracture strength(GPa)\n", "\n", "#Result\n", "print \"fracture strength is\",round(sigma_f/10**9,3),\"GPa\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.3, Page number 12.116" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ultimate tensile strength is 736.0 MPa\n", "ductility % of elongation is 10.0 %\n", "ductility % of reduction is 75.0 %\n", "modulus of toughness is 49 *10**6 Pa\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "ml=57800; #load(N)\n", "d=10*10**-3; #diameter(m)\n", "D=5; #diameter after fracture(mm)\n", "l=50; #guage length(mm)\n", "L=55; #length after fracture(mm)\n", "\n", "#Calculation\n", "ts=ml/(math.pi*(d/2)**2); #ultimate tensile strength(MPa)\n", "de=(L-l)*100/l; #ductility % of elongation(%)\n", "dr=((2*D)**2-D**2)*100/(2*D)**2; #ductility % of reduction(%)\n", "t=(2/3)*ts*de/100; #modulus of toughness(Pa)\n", "\n", "#Result\n", "print \"ultimate tensile strength is\",round(ts/10**6),\"MPa\"\n", "print \"ductility % of elongation is\",de,\"%\"\n", "print \"ductility % of reduction is\",dr,\"%\"\n", "print \"modulus of toughness is\",int(t/10**6),\"*10**6 Pa\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.4, Page number 12.116" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "elastic strain in 1st case is 0.001\n", "ratio of elastic and plastic strain in 2nd case is 2.5 %\n", "ratio of elastic and plastic strain in 3rd case is 1.0 %\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "pl1=206850*10**3; #proportional limit(Pa)\n", "pl2=310275*10**3; #proportional limit(Pa)\n", "pl3=413700*10**3; #proportional limit(Pa)\n", "s2=0.0615; #strain\n", "s3=0.2020; #strain\n", "Y=2.0685*10**11; #young's modulus(Pa)\n", "\n", "#Calculation\n", "e1=pl1/Y; #elastic strain in 1st case\n", "e2=pl2/Y; #elastic strain in 2nd case\n", "p2=s2-e2; #plastic strain in 2nd case\n", "r2=e2*100/p2; #ratio of elastic and plastic strain in 2nd case\n", "e3=pl3/Y; #elastic strain in 2nd case \n", "p3=s3-e3; #plastic strain in 2nd case \n", "r3=e3*100/p3; #ratio of elastic and plastic strain in 3rd case\n", "\n", "#Result\n", "print \"elastic strain in 1st case is\",e1\n", "print \"ratio of elastic and plastic strain in 2nd case is\",r2,\"%\"\n", "print \"ratio of elastic and plastic strain in 3rd case is\",r3,\"%\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.5, Page number 12.117" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "effective modulus is 738750.0 *10**3 Pa\n", "cross sectional area is 1.0831 *10**-4 m**2\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "s=12411*10**3; #stress(Pa)\n", "t=0.0168; #tension\n", "e=0.127; #elongation(cm)\n", "l=15.24; #length(cm)\n", "g=9.8;\n", "L=68.04; #load(kg)\n", "\n", "#Calculation\n", "E_eff=s/t; #effective modulus(Pa)\n", "S=e/l; \n", "W=E_eff*S;\n", "A=L*g/W; #cross sectional area(m**2)\n", "\n", "#Result\n", "print \"effective modulus is\",E_eff/10**3,\"*10**3 Pa\"\n", "print \"cross sectional area is\",round(A*10**4,4),\"*10**-4 m**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.6, Page number 12.117" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "transition temperature is 229.0 K\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "E=35*10**10; #youngs modulus(Pa)\n", "gama=2; #specific surface energy(J/m**2)\n", "C=2*10**-6; #length(m)\n", "x=17700; \n", "y=2.1;\n", "z=31.25;\n", "\n", "#Calculation\n", "sigma_f=math.sqrt(2*E*gama/(math.pi*C)); #fracture stress(Pa)\n", "T=x/((sigma_f/(9.8*10**6))-y+z); #transition temperature(K)\n", "\n", "#Result\n", "print \"transition temperature is\",round(T),\"K\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.7, Page number 12.118" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "critical resolved shear stress is 0.898 MPa\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "h1=1;\n", "h2=1;\n", "k1=1;\n", "k2=1;\n", "l1=1;\n", "l2=1;\n", "l3=0;\n", "s=3.5*10**6; #stress(Pa)\n", "\n", "#Calculation\n", "x=math.sqrt(h1**2+k1**2+l1**2);\n", "y=math.sqrt(h2**2+k2**2+l2**2);\n", "z=math.sqrt(h2**2+k2**2+l3**2);\n", "cos_phi=((h1*h2)-(k1*k2)+(l1*l2))/(x*y);\n", "sin_phi=math.sqrt(1-(cos_phi)**2);\n", "cos_theta=((h1*h2)+(k1*k2)+(l1*l3))/(x*z);\n", "ss=s*cos_theta*cos_phi*sin_phi; #critical resolved shear stress(Pa)\n", "\n", "#Result\n", "print \"critical resolved shear stress is\",round(ss/10**6,3),\"MPa\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.8, Page number 12.119" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "activation energy is 192.393 kJ/mol\n", "answer varies due to rounding off errors\n", "diffusion coefficient is 0.394 *10**-4 m**2/s\n", "diffusivity at 300 C is 11.37 *10**-23 m**2/s\n", "diffusivity at 700 C is 1.846 *10**-15 m**2/s\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "dz1=4*10**-18; #diffusivity(m**2/s)\n", "dz2=5*10**-13; #diffusivity(m**2/s)\n", "T1=773; #temperature(K)\n", "T2=1273; #temperature(K)\n", "T3=573; #temperature(K)\n", "T4=973; #temperature(K)\n", "\n", "#Calculation\n", "x1=round(math.log(dz1),2);\n", "y1=round(math.log(dz2),3);\n", "x2=round(-1/(8.314*T1),7);\n", "y2=round(-1/(8.314*T2),7);\n", "x=round((x1-y1),3);\n", "y=round((x2-y2),6);\n", "Q=x/y; #activation energy(J/mol)\n", "z=round(y1-(y2*Q),4);\n", "D0=math.exp(z); #diffusion coefficient(m**2/Vs)\n", "D1=D0*math.exp(-Q/(8.314*T3)); #diffusivity at 300 C(m**2/s)\n", "D2=D0*math.exp(-Q/(8.314*T4)); #diffusivity at 700 C(m**2/s)\n", "\n", "#Result\n", "print \"activation energy is\",round(Q/10**3,3),\"kJ/mol\"\n", "print \"answer varies due to rounding off errors\"\n", "print \"diffusion coefficient is\",round(D0*10**4,3),\"*10**-4 m**2/s\"\n", "print \"diffusivity at 300 C is\",round(D1*10**23,2),\"*10**-23 m**2/s\"\n", "print \"diffusivity at 700 C is\",round(D2*10**15,3),\"*10**-15 m**2/s\"\n", "print \"answer given in the book is wrong\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 12.9, Page number 12.119" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "diffusion is 4.9 *10**-15 m**2/s\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "D0=0.73*10**-4; #diffusion coefficient(m**2/s)\n", "Q=170*10**3; #activation energy(J/mol)\n", "R=8.314; \n", "T=873; #temperature(K)\n", "\n", "#Calculation\n", "D=D0*math.exp(-Q/(R*T)); #diffusion(m**2/s)\n", "\n", "#Result\n", "print \"diffusion is\",round(D*10**15,1),\"*10**-15 m**2/s\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }