{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 08 : Diffusion in Solids" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.1, Page No 180" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "t = 5.0 # thickness in mm\n", "c = 10.0 # concentration\n", "D = 1e-9 # diffusion coefficient\n", "\n", "#Calculations\n", "j = D*c/(t*1e-3)\n", "\n", "#Results\n", "print(\"Outward flux is %.0e kg m^-2 s^-1\" %j)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Outward flux is 2e-06 kg m^-2 s^-1\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.2, Page No 186" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "D_0 = 0.24e-4 \t# diffusion coefficient\n", "Q = 121e3\n", "R = 8.314\t# Universal gas constant\n", "T = 550 \t# temperature in Celsius\n", "k = 0.2 \t# thickness of pure Al sheet in mm\n", "d = 0.1 \t# penetration depth in mm\n", "c_x = 0.4 \t# concentration in percentage\n", "A = 2.0 \t# Constant in percentage\n", "B = 2.0\t\t# Constant in percentage\n", "\n", "#Calculations\n", "x = d-k\n", "D_cu_al = D_0*math.exp(-Q/(R*(T+273))) \n", "k = (A-c_x)/B\n", "if k ==0.8 :\n", " z = 0.9 # from table\n", "\n", "t = (x*1e-3)**2/(z**2*4*D_cu_al)\t# time in sec\n", "\n", "#Results\n", "print(\"Material can be kept at %d degree Celsius for nearly %d minute\" %(T,(t/60)))\t# answer in book is 100 min\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Material can be kept at 550 degree Celsius for nearly 102 minute\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.3, Page No 188" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "D_0 = 0.7e-4 \t # diffusion coefficient\n", "Q = 157.0\t\t # Energy in kJ mol^-1, considered from table 8.2\n", "R = 8.314\t\t # Universal gas constant\n", "T = 950.0\t\t # temperature in Celsius\n", "c2 = 0.8 \t\t # concentration in percentage\n", "cs = 0 \t\t\t # concentration in percentage\n", "c_x = 0.6 # concentration in percentage\n", "t = 4.0 # time in hours\n", "a = 1.0 #let\n", "\n", "#Calculations\n", "A = cs\n", "B = c2-cs \n", "D = D_0*math.exp(-Q*1e3/(R*(T+273)))\n", "k = math.erf(((A-c_x)/B))*-1\n", "if k >0.7 :\n", " if k<0.712 :\n", " z = 0.81 # from table\n", "\n", "x = z*2*math.sqrt(D*t*3600.0)\n", "\n", "#Results\n", "print(\"Depth up to which machining is required is nearly %.2f mm\" %(x*1e3))\n", "\n", "# numerical value of answer in book is 0.75\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Depth up to which machining is required is nearly 0.72 mm\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.4 Page No 189" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "D = 4e-17 \t\t# diffusion coefficient\n", "c1 = 0\n", "cs = 3e26\n", "c_x = 1e23 \t\t# number of atoms\n", "x = 2e-6 \t\t# depth in m\n", "\n", "#Calculations\n", "A = cs\n", "B = cs - c1\n", "k = (A-c_x)/B\n", "if k >0.99966 :\n", " if k< 0.9997 :\n", " z = 2.55 # from table\n", "\n", "t = x**2/(z**2*4*D) # time in sec\n", "\n", "#Results\n", "print(\"Time required to get required boron concentration is %d sec\" %t) # answer in book is 3845 sec\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time required to get required boron concentration is 3844 sec\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.5, Page No 194" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "r = 10.0 # radius in mm\n", "t = 4.0 # thickness in angstrom\n", "\n", "#Calculations\n", "r = 2*math.pi*r*1e-3*t*1e-10/(math.pi*(r*1e-3)**2)\n", "\n", "#Results\n", "print(\"Ratio of cross sectional areas is %.0e \" %r)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of cross sectional areas is 8e-08 \n" ] } ], "prompt_number": 15 } ], "metadata": {} } ] }