{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 16 : Magnetic Materials" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.1, Page No 396" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "a = 2.87 # lattice parameter in angstrom\n", "n = 2 # number of atoms per unit cell\n", "m = 1750 # Saturation magnetization in kAm^-1\n", "mu = 9.273e-24 # bohr magneton \n", "\n", "#Calculations\n", "m_atom = m*1e3*(a*1e-10)**3/n\n", "mu_b = m_atom/mu\n", "\n", "#Results\n", "print(\" Net magnetic moment per iron atom in crystal is %.3e Am^2\" %m_atom)\n", "print(\" In unit of mu_b, Net magnetic moment per iron atom in crystal is %.1f \" %mu_b)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Net magnetic moment per iron atom in crystal is 2.068e-23 Am^2\n", " In unit of mu_b, Net magnetic moment per iron atom in crystal is 2.2 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.2, Page No 398" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "t1 = 0 \t\t\t# temperature in kelvin\n", "t2 = 300.0 \t\t# temperature in kelvin\n", "m_net_Gd = 7.0 \t# net magnetic moment of gadolinium\n", "m_net_Co = 1.7 \t# net magnetic moment of cobalt\n", "t_c_Gd = 289.0 # curie temperature for Gd\n", "\n", "#Calculations\n", "print(\" Part A:\")\n", "if m_net_Gd> m_net_Co :\n", "\tprint(\" At %d K, Net magnetic moment of gadolinium i.e. %d is greater than net magnetic moment of cobalt i.e. %.1f \" %(t1,m_net_Gd,m_net_Co))\n", "\tprint(\" So, Gd will have higher saturation magnetization\")\n", "\n", "print(\" Part B:\")\n", "if t_c_Gd<t2 :\n", " print(\" At temperature %d K, Gd is above its curie temperature of %dK\" %(t2,t_c_Gd))\n", " print(\" Gd will be paramagnetic at %d K and will have negligible magnetization as compared to Co, which has higher curie temperature\" %t2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Part A:\n", " At 0 K, Net magnetic moment of gadolinium i.e. 7 is greater than net magnetic moment of cobalt i.e. 1.7 \n", " So, Gd will have higher saturation magnetization\n", " Part B:\n", " At temperature 300 K, Gd is above its curie temperature of 289K\n", " Gd will be paramagnetic at 300 K and will have negligible magnetization as compared to Co, which has higher curie temperature\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.4, Page No 402" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "v = 0.01 # volume in m^3\n", "x = 1e-4 # axis intercept\n", "y = 1e2 # axis intercept\n", "a = 60000.0 # Hysteresis loop area\n", "f = 50.0 # frequency in Hz\n", "\n", "#Calculations\n", "e = x*y*a # Energy loss in one loop\n", "E = e*v # energy loss in core in one cycle\n", "P = E*f # Power loss\n", "\n", "#Results\n", "print(\" Power loss due to hysteresis is %d W\" %P)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Power loss due to hysteresis is 300 W\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 16.5 Page No 405" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "Total1 = 2300.0 \t# total iron loss in W at 440 V and 50 Hz\n", "Total2 = 750.0 \t# total iron loss in W at 220 V and 25 Hz\n", "\n", "#Calculations\n", "W_e = 1.0/2*(Total1-2*Total2)\n", "\n", "#Results\n", "print(\" Eddy current loss at normal voltage and frequency is %d W\" %(4*W_e))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Eddy current loss at normal voltage and frequency is 1600 W\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }