{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11 : Plastic Deformation and Creep in Crystalline Materials" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.2, Page No 272" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "b = 2.0 \t\t# burger vector in angstrom\n", "v = 20*b**3 \t# activation volume \n", "tau_pn = 1000.0 # P-N stress of crystal in MNm**-2\n", "k = 1.38e-23 \t# physical constant\n", "t1 = 0 \t\t\t# temperature in K\n", "t2 = 100.0\t\t# temperature in K \n", "t3 = 300.0\t\t# temperature in K\n", "t4 = 500.0\t\t# temperature in K\n", "T = t1\t\n", "\n", "#Calculations\n", "tau_app = tau_pn - 40.0*k*T/(v*1e-30)\n", "print(\"The stress required to move the dislocation at temperature %dK is %d MNm**-2\" %(T,tau_app))\n", "print(\"Part B:\")\n", "T = t2\n", "tau_app = tau_pn - 40*k*T/(v*1e-30*1e6)\n", "print(\"The stress required to move the dislocation at temperature %dK is %d MNm**-2\" %(T,tau_app))\n", "print(\"Part C:\")\n", "T = t3\n", "tau_app = tau_pn - 40*k*T/(v*1e-30*1e6)\n", "if tau_app<0 :\n", " print(\" Stress to be applied is zero\")\n", " print(\"The stress required to move the dislocation at temperature %dK entirely overcome by thermal fluctuations\" %T)\n", "\n", "print(\"Part D:\")\n", "T = t4\n", "tau_app = tau_pn - 40*k*T/(v*1e-30*1e6)\n", "\n", "#Results\n", "if tau_app<0 :\n", " print(\"Stress to be applied is zero\")\n", " print(\"The stress required to move the dislocation at temperature %dK entirely overcome by thermal fluctuations\" %T)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The stress required to move the dislocation at temperature 0K is 1000 MNm**-2\n", "Part B:\n", "The stress required to move the dislocation at temperature 100K is 655 MNm**-2\n", "Part C:\n", " Stress to be applied is zero\n", "The stress required to move the dislocation at temperature 300K entirely overcome by thermal fluctuations\n", "Part D:\n", "Stress to be applied is zero\n", "The stress required to move the dislocation at temperature 500K entirely overcome by thermal fluctuations\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.3, Page No 278" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "mu = 44.0 # shear modulus of copper in GN m^-2\n", "b = 2.55 # burgers vector in angstrom\n", "tau = 35.0 # shear stress in MN m^-2\n", "\n", "#Calculations\n", "l = mu*1e9*b*1e-10/(tau*1e6)\n", "rho = 1/l**2\n", "\n", "#Results\n", "print(\"Dislocation density in copper is %.1e m^-2\" %rho)\n", "# Answer in book is 1e12 m^-2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dislocation density in copper is 9.7e+12 m^-2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.4, Page No 280" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "sigma1 = 120.0 # initial yield strength of material in MNm**-2\n", "sigma2 = 220.0 # Final yield strength of material in MN m**-2\n", "d1 = 0.04 # initial diameter in mm\n", "d2 = 0.01 # final diameter in mm\n", "n = 9.0 # astm number\n", "\n", "#Calculations\n", "print(\"Example 11.4\")\n", "k = (sigma2-sigma1)*1e6/(1/math.sqrt(d2*1e-3)-1/math.sqrt(d1*1e-3))\n", "sigma_i = sigma1*1e6 -k/math.sqrt((d1*1e-3))\n", "d = 1/math.sqrt(2**(n-1)*1e4/645)\n", "sigma_y = sigma_i+k*(d*1e-3)**(-0.5)\n", "\n", "#Results\n", "print(\"Yield stress for a grain size of ASTM 9 is %d MN m**-2\" %math.ceil(sigma_y/1e6))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Example 11.4\n", "Yield stress for a grain size of ASTM 9 is 179 MN m**-2\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.5 Page No 283" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "n1 = 1e6 # initial number of particles\n", "n2 = 1e3 # final number of particle\n", "\n", "#Calculations\n", "k = (n1/n2)**(1.0/3)\n", "\n", "#Results\n", "print(\"Yield strength would have decreased to %d percent of its initial value.\" %(100.0/k))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Yield strength would have decreased to 10 of its initial value.\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }