{ "metadata": { "name": "", "signature": "sha256:7de7bac9701b444eddc88961b7eb9eeb7cb67a83da1ca69ef2052c0cb80692d5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter16:Semiconductors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16.1:pg-315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 16.1 : concentration\n", "\n", "#given data :\n", "e=1.602*10**-19;# Coulomb\n", "sigma_i=5*10**-4;# in ohm/m\n", "mu_n=0.14;# in m**2/V-sec\n", "mu_p=0.05;# in m**2/V-sec\n", "n_i=sigma_i/(e*(mu_n+mu_p));\n", "print round(n_i*10**6,-20),\"= the concentration,n_i(/cm**3) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1.64e+22 = the concentration,n_i(/cm**3) \n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16.2:pg-315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 16.2 : intrinsic carrier\n", " \n", "\n", "#given data :\n", "e=1.602*10**-19; # Coulomb\n", "p_i=2*10**-4;# in ohm-m\n", "mu_n=6;# in m**2/V-sec\n", "mu_p=0.2;# in m**2/V-sec\n", "n_i=1/(e*(mu_n+mu_p)*p_i);\n", "print round(n_i,-19),\"= the intrinsic carrier,n_i(/m**3) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "5.03e+21 = the intrinsic carrier,n_i(/m**3) \n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16.3:pg-315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 16.3 : neglect the intrinsic conductivity\n", " \n", "\n", "#given data :\n", "e=1.6*10**-19; # Coulomb\n", "sigma=10**-12;# in mhos/m\n", "mu_n=0.18;# in m**2/V-sec\n", "n=sigma/(e*mu_n);\n", "N=n; # amount of n type impurity\n", "print \"{:.2e}\".format(N),\"in(/m**3) \"\n", "# The answer is slightly different in textbook due to approximation" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "3.47e+07 in(/m**3) \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16.4:pg-315" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 16.4 : number of electron carriers\n", " \n", "\n", "#given data :\n", "e=1.6*10**-19; # Coulomb\n", "p=20*10**-2;# in ohm-m\n", "mu_n=100*10**-4;# in m**2/V-sec\n", "n=1/(e*mu_n*p);\n", "print round(n,-19),\"= number of electrons carrier,n(/m**3) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "3.12e+21 = number of electrons carrier,n(/m**3) \n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16.5:pg-316" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 16.5 : concentration of impurity\n", "import math\n", "e=1.6*10**-19;# Coulomb\n", "l=10;#in mm\n", "d=1;#in mm\n", "r=100;#in ohms\n", "up=0.19;#mobilty of electrons in V-sec\n", "a=(math.pi*((d*10**-3)**2))/4;#area in m**2\n", "p=((r*a))/(l*10**-3);#resistivity in Ohm-cm\n", "n=((1/(p*e*up)));#concentration in per m**3\n", "print round(n,-19),\"is impurity concentration is in per m**3\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "4.19e+21 is impurity concentration is in per m**3\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16.6:pg-316" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 16.6 : intrinsic carrier density\n", " \n", "#given data :\n", "\n", "e=1.602*10**-19; # in coulomb\n", "p=3000.0;# in ohm/m\n", "sigma=1/p;# in ohm/m\n", "mu_n=0.14;# in m**2/V-sec\n", "mu_p=0.05;# in m**2/V-sec\n", "n_i=sigma/(e*(mu_n+mu_p));\n", "print round(n_i,-13),\"is the concentration,n_i(/m**3) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1.095e+16 is the concentration,n_i(/m**3) \n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16.7:pg-317" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 16.7 : conductivity\n", " \n", "#given data :\n", "e=1.602*10**-19; # in coulomb\n", "n_i=5.021*10**15; # in m**-3\n", "mu_n=0.48;# in m**2/V-sec\n", "mu_p=0.013;# in m**2/V-sec\n", "sigma=n_i*(e*(mu_n+mu_p));\n", "print \"{:.3e}\".format(sigma),\"= the conductivity,sigma(ohm**-1 m**-1) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "3.966e-04 = the conductivity,sigma(ohm**-1 m**-1) \n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }