{ "metadata": { "name": "", "signature": "sha256:1f19c621c1710fca6ce3cb6f7f8c868a9f6c8ea08665855d38ed65721b994246" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter02: Structure of atoms" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.1:pg-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 2.1 : radius of the first bohr\"s orbit \n", " \n", "#given data :\n", "\n", "ep=8.854*10**-12;#\n", "h=6.626*10**-34;#\n", "m=9.1*10**-31;#in Kg\n", "e=1.602*10**-19;#\n", "r1=((ep*(h**2))/((math.pi*m*(e**2))));#\n", "print round(r1*10**10,2),\"is radius,r1(in angstrom) \"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0.53 is radius,r1(in angstrom) \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.2:pg-12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Example 2.2 : radius of the second bohr\"s orbit \n", " \n", "#given data :\n", "\n", "r1_h=0.529; # radius for hydrozen atom in Angstrum\n", "n1=1;# for the first bohr's orbit of electron in hydrozen atom\n", "Z1=1; # for the first bohr's orbit of electron in hydrozen atom\n", "k=(r1_h*Z1)/n1**2; # where k is constant\n", "n2=2; # for the second bohr orbit\n", "Z2=2; #for the second bohr orbit\n", "r2_he=k*(n2**2/Z2);\n", "print r2_he,\" is radius of the second bohr orbit,r2 in (Angstrom) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1.058 is radius of the second bohr orbit,r2 in (Angstrom) \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.3:pg-13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Example 2.3: to prove\n", " \n", "Z=1;#assume\n", "n1=1;#orbit 1\n", "n2=2;#orbit 2\n", "n3=3;#orbit 3\n", "e1=((-13.6*Z)/(n1**2));#energy for the first orbit\n", "e2=((-13.6*Z)/(n2**2));#energy for the second orbit\n", "e3=((-13.6*Z)/(n3**2));#energy for the third orbit\n", "e31=e3-e1;#energy emitted by an electron jumping from orbit nuber 3 to orbit nimber 1\n", "e21=e2-e1;#energy emitted by an electron jumping from orbit nuber 2 to orbit nimber 1\n", "re=e31/e21;#ratio of energy\n", "print round(re,2),\" is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \\n hence proved\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1.19 is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \n", " hence proved\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.4:pg-13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 2.4 : velocity\n", "\n", "import decimal\n", " \n", "#given data :\n", "\n", "h=6.626*10**-34;\n", "e=1.6*10**-19;\n", "epsilon_o=8.825*10**-12;\n", "n=1;\n", "Z=1;\n", "vn=(Z*e**2)/(2*epsilon_o*n*h);\n", "print \"{:.3e}\".format(vn),\" is velocity,vn in (m/s) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "2.189e+06 is velocity,vn in (m/s) \n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.5:pg-14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 2.5 : velocity\n", " \n", "#given data :\n", "n=1;\n", "Z=1;\n", "k=6.56*10**15; # k is constant\n", "fn=k*(Z**2/n**3);\n", "print fn,\" is orbital frequency,fn in (Hz) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "6.56e+15 is orbital frequency,fn in (Hz) \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.6.a:pg-14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 2.6.a : the energy of the photon emitted\n", " \n", "#given data :\n", "Z=1;#for hydrogen\n", "n1=3;\n", "n2=2;\n", "E3=-(13.6*Z**2)/n1**2;\n", "E2=-(13.6*Z**2)/n2**2;\n", "del_E=E3-E2;\n", "print round(del_E,2),\" is the energy of photon emitted, del_E in (eV) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1.89 is the energy of photon emitted, del_E in (eV) \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.6.b:pg-14" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 2.6.b : frequency\n", " \n", "#given data :\n", "\n", "Z=1;#for hydrozen\n", "n1=3;\n", "n2=2;\n", "m=6.626*10**-34;# mass of electron in kg\n", "E3=-(13.6*Z**2)/n1**2;\n", "E2=-(13.6*Z**2)/n2**2;\n", "del_E=E3-E2;\n", "E=del_E*1.6*10**-19;# in joules\n", "v=(E/m);\n", "print round(v,-12),\"frequency of the photon emitted,v(Hz) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "4.56e+14 frequency of the photon emitted,v(Hz) \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.6.c:pg-15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 2.6.c : wave length of the photon emitted\n", " \n", "#given data :\n", "\n", "Z=1;#for hydrozen\n", "n1=3;\n", "n2=2;\n", "m=6.626*10**-34;# mass of electron in kg\n", "C=3*10**8;\n", "E3=-(13.6*Z**2)/n1**2;\n", "E2=-(13.6*Z**2)/n2**2;\n", "del_E=E3-E2;\n", "E=del_E*1.6*10**-19;\n", "v=E/m;\n", "lamda=C/v;\n", "print round(lamda,9),\" is wavelength of the photon emitted,(m) \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "6.58e-07 is wavelength of the photon emitted,(m) \n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }