{

 "metadata": {

  "name": "",

  "signature": "sha256:dd88e5202fe8cb4f62cee212896e4620a6a485517d90fb3c0293ab4baa871eef"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter02: Structure of atoms"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.1:pg-12"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Example 2.1 : radius of the first bohr\"s orbit \n",

      " \n",

      "#given data :\n",

      "\n",

      "ep=8.854*10**-12;#\n",

      "h=6.626*10**-34;#\n",

      "m=9.1*10**-31;#in Kg\n",

      "e=1.602*10**-19;#\n",

      "r1=((ep*(h**2))/((math.pi*m*(e**2))));#\n",

      "print round(r1*10**10,2),\"is radius,r1(in angstrom) \"\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "0.53 is radius,r1(in angstrom) \n"

       ]

      }

     ],

     "prompt_number": 2

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.2:pg-12"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "#Example 2.2 : radius of the second bohr\"s orbit \n",

      " \n",

      "#given data :\n",

      "\n",

      "r1_h=0.529; # radius for hydrozen atom in Angstrum\n",

      "n1=1;# for the first bohr's orbit of electron in hydrozen atom\n",

      "Z1=1; # for the first bohr's orbit of electron in hydrozen atom\n",

      "k=(r1_h*Z1)/n1**2; # where k is constant\n",

      "n2=2; # for the second bohr orbit\n",

      "Z2=2; #for the second bohr orbit\n",

      "r2_he=k*(n2**2/Z2);\n",

      "print r2_he,\" is radius of the second bohr orbit,r2 in (Angstrom) \"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "1.058  is radius of the second bohr orbit,r2 in (Angstrom) \n"

       ]

      }

     ],

     "prompt_number": 4

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.3:pg-13"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "# Example 2.3: to prove\n",

      " \n",

      "Z=1;#assume\n",

      "n1=1;#orbit 1\n",

      "n2=2;#orbit 2\n",

      "n3=3;#orbit 3\n",

      "e1=((-13.6*Z)/(n1**2));#energy for the first orbit\n",

      "e2=((-13.6*Z)/(n2**2));#energy for the second orbit\n",

      "e3=((-13.6*Z)/(n3**2));#energy for the third orbit\n",

      "e31=e3-e1;#energy emitted by an electron jumping from orbit nuber 3 to orbit nimber 1\n",

      "e21=e2-e1;#energy emitted by an electron jumping from orbit nuber 2 to orbit nimber 1\n",

      "re=e31/e21;#ratio of energy\n",

      "print re,\" is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \\n hence proved\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "1.18518518519  is equal to ratio of energy for an electron to jump from orbit 3 to orbit 1 and from orbit 2 to orbit 1 is 32/27 \n",

        " hence proved\n"

       ]

      }

     ],

     "prompt_number": 7

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.4:pg-13"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Example 2.4 : velocity\n",

      " \n",

      "#given data :\n",

      "\n",

      "h=6.626*10**-34;\n",

      "e=1.6*10**-19;\n",

      "epsilon_o=8.825*10**-12;\n",

      "n=1;\n",

      "Z=1;\n",

      "vn=(Z*e**2)/(2*epsilon_o*n*h);\n",

      "print vn,\" is velocity,vn in (m/s) \"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "2188990.2342  is velocity,vn in (m/s) \n"

       ]

      }

     ],

     "prompt_number": 8

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.5:pg-14"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Example 2.5 : velocity\n",

      " \n",

      "#given data :\n",

      "n=1;\n",

      "Z=1;\n",

      "k=6.56*10**15; # k is constant\n",

      "fn=k*(Z**2/n**3);\n",

      "print fn,\" is orbital frequency,fn in (Hz) \"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "6.56e+15  is orbital frequency,fn in (Hz) \n"

       ]

      }

     ],

     "prompt_number": 9

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.6.a:pg-14"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Example 2.6.a : the energy of the photon emitted\n",

      " \n",

      "#given data :\n",

      "Z=1;#for hydrozen\n",

      "n1=3;\n",

      "n2=2;\n",

      "E3=-(13.6*Z**2)/n1**2;\n",

      "E2=-(13.6*Z**2)/n2**2;\n",

      "del_E=E3-E2;\n",

      "print round(del_E,2),\" is the energy of photon emitted, del_E in (eV) \"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "1.89  is the energy of photon emitted, del_E in (eV) \n"

       ]

      }

     ],

     "prompt_number": 12

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.6.b:pg-14"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Example 2.6.b : frequency\n",

      " \n",

      "#given data :\n",

      "\n",

      "Z=1;#for hydrozen\n",

      "n1=3;\n",

      "n2=2;\n",

      "m=6.626*10**-34;# mass of electron in kg\n",

      "E3=-(13.6*Z**2)/n1**2;\n",

      "E2=-(13.6*Z**2)/n2**2;\n",

      "del_E=E3-E2;\n",

      "E=del_E*1.6*10**-19;# in joules\n",

      "v=(E/m);\n",

      "print round(v,2),\"frequency of the photon emitted,v(Hz) \"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "4.5611563873e+14 frequency of the photon emitted,v(Hz) \n"

       ]

      }

     ],

     "prompt_number": 9

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex2.6.c:pg-15"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#Example 2.6.c : wave length of the photon emitted\n",

      " \n",

      "#given data :\n",

      "\n",

      "Z=1;#for hydrozen\n",

      "n1=3;\n",

      "n2=2;\n",

      "m=6.626*10**-34;# mass of electron in kg\n",

      "C=3*10**8;\n",

      "E3=-(13.6*Z**2)/n1**2;\n",

      "E2=-(13.6*Z**2)/n2**2;\n",

      "del_E=E3-E2;\n",

      "E=del_E*1.6*10**-19;\n",

      "v=E/m;\n",

      "lamda=C/v;\n",

      "print round(lamda,9),\" is wavelength of the photon emitted,(m) \"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "6.58e-07  is wavelength of the photon emitted,(m) \n"

       ]

      }

     ],

     "prompt_number": 4

    }

   ],

   "metadata": {}

  }

 ]

}