{ "metadata": { "name": "", "signature": "sha256:b4c4e8b4e1c16c859c0b2970e90b60e284d6f5febb43327aebce670fd8dbf006" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ch-5,Material Characterization" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example-5.1 page no-136" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi, sin, asin\n", "#given\n", "#wavelength of X-rays beams of light\n", "lamda=0.824*10**-10 #m\n", "#glancing angle of the incident light\n", "theta1=(8+35/60)*(pi)/180 #radians\n", "n1=1\n", "#to find theta3 i.e at\n", "n3=3\n", "#as we know that\n", "#2*d*sin(theta)=n*lambda\n", "#so for n1 and n3 we get in the same way and solving together we get \n", "theta3=asin(3*sin(theta1))\n", "#so \n", "d=lamda/2/sin(theta1)\n", "print \"the galncing angle for the third order diffraction is and interplanar spacing of the crystal is 2.761 A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the galncing angle for the third order diffraction is and interplanar spacing of the crystal is 2.761 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example-5.2 page no-141" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt, pi\n", "#given\n", "#bragg's angle of reflection\n", "theta1=17.03*(pi)/180 #radians\n", "#wavelength of light\n", "lamda=0.71 #A\n", "#according to bragg's equation \n", "#n*lambda=2*d*sin(theta)\n", "#for n=1\n", "d=lamda/2/sin(theta1) #A\n", "#given that h**2+k**2+l**2=8\n", "#let (h**2+k**2+l**2)**1/2=H\n", "#we get\n", "H=sqrt(8)\n", "a=d*H #A\n", "print \"since h**2+k**2+l**2=8 ,hence the reflecting planes will be (220). family of planes (220) include (220), (202), (022) ,etc.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "since h**2+k**2+l**2=8 ,hence the reflecting planes will be (220). family of planes (220) include (220), (202), (022) ,etc.\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example-5.3 page n0-141" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "#lattice constant\n", "a=1.54 #A\n", "#wavelength of beam of light\n", "lamda=1.54 #A\n", "#according to bragg's equation\n", "#n*lambda=2*d*sin(theta)\n", "#following angles are given\n", "theta1=20.3*(pi)/180\n", "theta2=29.2*(pi)/180\n", "theta3=36.7*(pi)/180\n", "theta4=43.6*(pi)/180\n", "#interplaner spadcing is \n", "d1=lamda/(2*sin(theta1)) #A\n", "d2=lamda/(2*sin(theta2)) #A\n", "d3=lamda/(2*sin(theta3)) #A\n", "d4=lamda/(2*sin(theta4)) #A\n", "#magnitude of bragg's \n", "#we have h**2+k**2+l**2=a**2/d**2\n", "#let a**2/d**2= D for notation only\n", "#so\n", "D1=2\n", "D2=4\n", "D3=6\n", "D4=8\n", "#so from bragg's magnitude we can get (hkl)\n", "#(hkl1)=(110)\n", "#(hkl3)=(200)\n", "#(hkl3)=(211)\n", "#(hkl4)=(220)\n", "print \"the reflection will take from {110},{200},{211} and (220)\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the reflection will take from {110},{200},{211} and (220)\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example-5.5 page no-146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "#wavelength of X-ray\n", "lamda=1.54 #A\n", "#diameter of powder camera\n", "D=114.6 #mm\n", "#radius of powder camera\n", "R=D/2 #mm\n", "#value of l\n", "l1=86\n", "l2=100\n", "l3=148\n", "l4=180\n", "l5=188\n", "l6=232\n", "l7=272\n", "#we know that\n", "#theta=l/4\n", "#so\n", "theta1=l1/4*(pi)/180 #radians\n", "theta2=l2/4*(pi)/180 #radians\n", "theta3=l3/4*(pi)/180 #radians\n", "theta4=l4/4*(pi)/180 #radians\n", "theta5=l5/4*(pi)/180 #radians\n", "theta6=l6/4*(pi)/180 #radians\n", "theta7=l7/4*(pi)/180 #radians\n", "#now values of sin (theta) and sin(theta2)\n", "S1=sin(theta1)\n", "SS1=(sin(theta1))**2\n", "S2=sin(theta1)\n", "SS2=(sin(theta1))**2\n", "S3=sin(theta1)\n", "SS3=(sin(theta1))**2\n", "S4=sin(theta1)\n", "SS4=(sin(theta1))**2\n", "S5=sin(theta1)\n", "SS5=(sin(theta1))**2\n", "S6=sin(theta1)\n", "SS6=(sin(theta1))**2\n", "S7=sin(theta1)\n", "SS7=(sin(theta1))**2\n", "#so the ratio can be expressed as\n", "#3:4:8:11:12:16:19\n", "print \"from the extinction rule, we notice that this is an FCC Structure\"\n", "#the lattice parameter for highest bragg's angle is\n", "#a=lambda*sqrt(h**2+k**2+l**2)/(2*sin(theta))\n", "#here h**2+k**2+l**2=19\n", "#and let h**2+k**2+l**2 =M for notation\n", "M=19\n", "a=lamda*sqrt(M)/(2*sin(theta6)) #A\n", "print \"lattice parameter of material is %0.2f A\"%(a)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from the extinction rule, we notice that this is an FCC Structure\n", "lattice parameter of material is 3.96 A\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example-5.6 page no-158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "#ASTM number\n", "n=12\n", "#as we know that the number of grains N observed on photomicrograph is given by\n", "N=2**(n-1)\n", "#as we know that grain size diameter is given by\n", "d=1/sqrt((N/645)*10**4) #mm because 1 square inch=645 mm**2\n", "print \"the grain diameter for an ASTM number 12 is %f mm\"%(d)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the grain diameter for an ASTM number 12 is 0.005774 mm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example-5.7 page no-158" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "#given\n", "#no of grains within the view of a micrograph\n", "n1=41\n", "#no of grains cut by circumference\n", "n2=42\n", "#diameter of circular area\n", "d=1 #inch\n", "#area\n", "A=(pi)/4*d**2 #inch**2\n", "#the area density of grains\n", "\n", "N=(n1+n2/2)/A #grains/inch**2\n", "#grain size\n", "n=log(N)/log(2)+1 \n", "print \"the area density of grains is %0.2f grains/inch**2 and grain size is 8\"%(N)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the area density of grains is 78.94 grains/inch**2 and grain size is 8\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example-5.8 page no-159" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "#given\n", "#ASTM no of grains\n", "ASTM=5\n", "#area density of grains\n", "N=2**(ASTM-1) #grains/inch**2 at magnification of 100*\n", "#as we know that lineal and areal magnification are related as\n", "#*100 lineal=*10000 areal\n", "#therefore\n", "Nnew=N/0.01/0.01 #grains/inch**2 at 1*\n", "#average area of one grain\n", "A=1/Nnew*(2.54)**2 #cm**2\n", "#now 160000 grains/inch**2 of surface is sqrt(160000)=400 grains/inch of length and this is equal to=(400)**3==6.4*10**7 grains/m**3 of volume\n", "#surface area of each cubic surface\n", "S=(1/400)**2 #inch**2\n", "#there are 6 surfaces in accubic grain\n", "#thus total surface area of each grain\n", "T=1/2*6*S*(400)**3/2.54 #cm**2 boundary per cubic cm of steel\n", "print \"the boumdary area per cubic centimeter of steel is %0.2e cm**2 boundary per cubic centimeter of steel\"%T " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the boumdary area per cubic centimeter of steel is 4.72e+02 cm**2 boundary per cubic centimeter of steel\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }