{ "metadata": { "name": "", "signature": "sha256:10485c06d3141b9088340f19ea6a7420664af7ae170cac60ae1844a81a9e618f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4 :\n", "Bonds in solid" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1 Page No : 137" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "import math \n", "\n", "# Variables\n", "r_o = 2.8\t\t\t#interatomic distance in \u00c5\n", "R_o = 2.8*10**(-10);#interatomic distance in m\n", "u_o = 8.;\t\t\t#released energy in eV\n", "e = 1.6*10**(-19);\t#charge of electron in C\n", "U_o = 8.*e\t\t\t#released energy in Joule\n", "\n", "# Calculation\n", "A = (5./4)*U_o*(R_o**2);\t\t\t#proportionality constant for attraction in J-m2\n", "B = A*(R_o**8)/5;\t\t\t#proportionality constant for repulsion in J-m2\n", "r_c = (110*B/(6*A))**(1./8);\t\t\t#interatomic distance at which the dissociation occurs in m\n", "F = -(2/r_c**3)*(A-5*B/(r_c**8));\t\t\t#the force required to dissociate the molecule in N\n", "\n", "# Results\n", "print 'proportionality constant for attraction = %.2e J-m2'%A\n", "print 'proportionality constant for repulsion = %.2e J-m2'%B\n", "print 'interatomic distance at which the dissociation occurs = %.2e m'%r_c\n", "print 'the force required to dissociate the molecule = %.2e N'%F\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "proportionality constant for attraction = 1.25e-37 J-m2\n", "proportionality constant for repulsion = 9.48e-115 J-m2\n", "interatomic distance at which the dissociation occurs = 3.29e-10 m\n", "the force required to dissociate the molecule = -5.11e-09 N\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2 Page No : 138" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "import math \n", "\n", "# Variables\n", "r_o = 3.14;\t\t\t#nearest neighbour equilibrium distance in \u00c5\n", "R_o = 3.14*10**(-10);\t\t\t#nearest neighbour equilibrium distance in m\n", "K = 5.747*10**(-11);\t\t\t#compressibility of KCl in m2/N\n", "M = 1.748;\t\t\t#Madelung constant\n", "pi = 22./7;\n", "\n", "# Calculation\n", "E_o = 8.854*10**(-12);\n", "q = 1.6*10**(-19);\t\t\t#electron charge\n", "n = 1+18*(R_o**4)*4*pi*E_o/(K*M*q**2);\n", "\n", "# Results\n", "print 'repulsive exponent n = %.1f'%n\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "repulsive exponent n = 8.6\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3 Page No : 139" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "import math \n", "\n", "# Variables\n", "F_1 = 3.02*10**(-9);\t\t\t#force of attraction b/w ions of Na+ and Cl-\n", "Z_1 = +1;\n", "Z_2 = -1;\n", "e = 1.6*10**(-19);\n", "E_o = 8.854*10**-12;\n", "pi = 22./7;\n", "r_Na = 0.95;\t\t\t#ionic radius of Na+ ion\n", "\n", "# Calculation\n", "r = (-Z_1*Z_2*e**2/(4*pi*E_o*F_1))**(1./2);\t\t\t#Radius of ion in meter\n", "R = r/10**(-10);\t\t\t#Radius of ion in Angstrom\n", "r_Cl = (R-r_Na);\t\t\t#Radius of Cl- ion in Angstrom\n", "\n", "# Results\n", "print 'Ionic Radius of Cl- ion in = %.2f Angstrom'%r_Cl\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ionic Radius of Cl- ion in = 1.81 Angstrom\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4 Page No : 139" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "import math \n", "\n", "# Variables\n", "Z_1 = +2;\n", "Z_2 = -2;\n", "r_Mg = 0.65;\t\t\t#radius of Mg++ ion\n", "r_S = 1.84;\t\t\t#radius of S-- ion\n", "r = r_Mg+r_S;\t\t\t#net radius(in Angstrom)\n", "\n", "# Calculation\n", "R = r*10**(-10);\t\t\t#net radius(in meter)\n", "e = 1.6*10**(-19);\n", "E_o = 8.854*10**-12;\n", "pi = 22./7;\n", "F = -Z_1*Z_2*e**2/(4*pi*E_o*R**2);\t\t\t#force of attraction between ions(in Newton)\n", "\n", "# Results\n", "print 'force of attraction between ions in = %.1e Newton'%F\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "force of attraction between ions in = 1.5e-08 Newton\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5 Page No : 150" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "import math \n", "\n", "# Variables\n", "#Na atom requires +5.14 eV of energy. When this electron is transferred to a vacant position,it gives back \u20134.02 eV of energy\n", "E_1 = +5.14;\t\t\t#in eV\n", "E_2 = -4.02;\t\t\t#in eV\n", "\n", "# Calculation\n", "NET_energy = E_1+E_2;\t\t\t#in eV\n", "\n", "# Results\n", "print 'Net spent energy in whole process in = %.2f eV'%NET_energy\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Net spent energy in whole process in = 1.12 eV\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.6 Page No : 150" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\t\t\t\n", "import math \n", "\n", "# Variables\n", "Enthalpy = 6.02;\t\t\t#enthalpy of fusion of ice is 6.02 kJ/mol\n", "E_h = 20.5;\t\t\t#Hydrogen bond energy (in kJ/mol)\n", "#There are two moles of hydrogen bonds per mole of H2O in ice.\n", "\n", "# Calculation\n", "H_b = Enthalpy/(2*E_h);\t\t\t#the fraction of hydrogen bonds that are broken when ice melts\n", "\n", "# Results\n", "print 'fraction of hydrogen bonds that are broken when ice melts = %.2f'%H_b\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "fraction of hydrogen bonds that are broken when ice melts = 0.15\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }