{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 : Mechanical Testing" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.1 pageno : 195" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "b = 225.;\t\t\t#in mm\n", "h = 10. \t\t\t#in mm\n", "l = 1100.;\t\t\t#in mm\n", "f1 = 250.;\t\t\t#in N\n", "f2 = 350;\t\t\t#in N at which glass breaks\n", "\n", "# Calculations\n", "m = f1*l/4.;\t\t\t#in N-mm\n", "f = f1/2.; \t\t\t#in N\n", "a = (6*m)/(b*h**2);\t\t\t#in N/mm**2\n", "t = (3*f)/(2*b*h);\t\t\t#in N/sqmm\n", "r = f2*l/4;\t\t\t #in N-mm\n", "i = (b*h**3)/12;\t\t\t#in mm**4\n", "y = h/2;\t \t\t#in mm\n", "mr = r*y/i;\t\t \t#in n/sqmm\n", "\n", "# Results\n", "print \"Flexural Strength (in N/sqmm) = %.2f N/mm**2\"%a\n", "print \"Shear Strength (in N/sqmm) = %3f N/mm**2\"%t\n", "print \"Modulous of Rupture (in N/sqmm) = %.2f N/mm**2\"%mr\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Flexural Strength (in N/sqmm) = 18.33 N/mm**2\n", "Shear Strength (in N/sqmm) = 0.083333 N/mm**2\n", "Modulous of Rupture (in N/sqmm) = 25.67 N/mm**2\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.2 pageno : 201" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "# Variables\n", "d = 5.; \t\t\t#in mm\n", "\n", "# Calculations\n", "id = 32.5/10;\t\t\t#indentation diameter in mm\n", "p = 30*d**2;\t\t\t#load for steel specimen in kgf\n", "bhn = p/((3.14*d/2)*(d-math.sqrt(d**2-id**2)));\t\t\t#in kgf/sqmm\n", "\n", "# Results\n", "print \"Load P for steel specimen (in kgf) = %.f kgf\"%p\n", "print \"BRINELL HARDNESS NUMBER of the steel specimen = %.1f\"%bhn\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Load P for steel specimen (in kgf) = 750 kgf\n", "BRINELL HARDNESS NUMBER of the steel specimen = 79.6\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.3 pageno : 209" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "# Variables\n", "l = 0.1;\t\t\t#frictinal and windage losses in kgf-m\n", "dr = 5.9;\t\t\t#dial reading in kgf-m\n", "w = 19.33;\t\t\t#weight of hammer in kgf-m\n", "t = 10.;\t\t\t#in mm\n", "ui = 30.;\t\t\t#in kgf-m\n", "a = 160.;\t\t\t#angle in degrees\n", "r = 0.8;\t\t\t#swing radius in m\n", "\n", "\n", "# Calculations\n", "u = dr-l;\t \t\t#in kgf-m\n", "d = t/5;\t\t \t#depth of V-notch in mm\n", "te = t-d;\t\t \t #effective thickness in mm\n", "ve = 75.*10*te; \t\t\t#effective volume in cu. mm\n", "vem = ve*10.**-9;\t\t\t#in cu. m\n", "mr = u/vem;\t \t\t#in kgf/sqm\n", "ae = t*te; \t\t\t#effective area of cross section in sqmm\n", "aem = ae*10**-6;\t\t\t#in sqm\n", "is_ = u/aem;\t\t \t#in kg/m\n", "uf = ui-u;\t\t\t#in kgf-m\n", "hf = uf/w;\t\t\t#in m\n", "B = math.degrees(math.acos(1-(uf/(w*r))))\n", "\n", "# Results\n", "print \"Rupture Energy (in kgf-m) = %.1f kgf-m\"%u\n", "print \"Modulous Of Rupture (in kgf/sqm) = %.1e kgf/m**2\"%mr\n", "print \"Notch Imapct Strength (in kg/m) = %.2e kgm\"%is_\n", "print \"Height risen by Hammer (in m) = %.2f m\"%hf\n", "print \"Angle after Breaking the specimen (in degress) = %.1f degrees\"%(B)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rupture Energy (in kgf-m) = 5.8 kgf-m\n", "Modulous Of Rupture (in kgf/sqm) = 9.7e+05 kgf/m**2\n", "Notch Imapct Strength (in kg/m) = 7.25e+04 kgm\n", "Height risen by Hammer (in m) = 1.25 m\n", "Angle after Breaking the specimen (in degress) = 124.4 degrees\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.4 pageno : 211" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "a_m = 70.; \t \t\t#mean stress in Mpa\n", "a_r = 210.;\t \t \t#stress amplitude in Mpa\n", "\n", "# Calculations\n", "a_max = ((2*a_m)+a_r)/2;\t\t\t#maximum stress in MPa\n", "a_min = 2*a_m-a_max;\t \t\t#Minimum stress in MPa\n", "s = a_min/a_max;\t\t\t #stress ratio\n", "sr = a_max-a_min; \t\t\t#stress range in MPa\n", "\n", "# Results\n", "print \"Maximum Stress Level (in MPa) = \",a_max\n", "print \"Minimum Stress Level (in MPa) = \",a_min\n", "print \"Stress Ratio = \",s\n", "print \"Stress Range (in MPa) = \",sr\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum Stress Level (in MPa) = 175.0\n", "Minimum Stress Level (in MPa) = -35.0\n", "Stress Ratio = -0.2\n", "Stress Range (in MPa) = 210.0\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.5 pageno : 212" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "p_min = 20.;\t\t\t#in kN\n", "p_max = 50.;\t\t\t#in kN\n", "l = 500.; \t\t\t#in mm\n", "d = 60.;\t \t\t#in mm\n", "a_u = 650.;\t\t \t#in MPa\n", "a_y = 520.;\t\t #in MPa\n", "fos = 1.8;\t\t\t #factor of safety\n", "\n", "# Calculations\n", "m_max = p_max*l/4;\t\t\t#maximum bending moment in kN mm\n", "m_min = p_min*l/4;\t\t\t#minimum bending moment in kN mm\n", "m_m = (m_max+m_min)/2;\t\t\t#mean bending moment in kN mm\n", "m_a = (m_max-m_min)/2;\t\t\t#alternating bending moment in kN mm\n", "z = 3.14*d**3/32;\n", "a_m = (m_m/z)*1000;\t\t\t#mean bending stress in MPa\n", "a_a = (m_a/z)*1000;\t\t\t#alternating bending stress in MPa\n", "a_e1 = a_a/((1/fos)-(a_m/a_u)**2*fos);\t\t\t#in MPa\n", "a_e2 = a_a/((1/fos)-(a_m/a_u));\t\t\t#in MPa\n", "a_e3 = a_a/((1/fos)-(a_m/a_y));\t\t\t#in MPa\n", "\n", "# Results\n", "print \"ENDURANCE STRESS FROM Gerbers Parabolic Function (in MPa) = %.2f MPa\"%a_e1\n", "print \"ENDURANCE STRESS FROM Goodman Straight Line Relation (in MPa) = %.2f MPa\"%a_e2\n", "print \"ENDURANCE STRESS FROM Soderberg Straight Line Relation (in MPa) = %.2f MPa\"%a_e3\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ENDURANCE STRESS FROM Gerbers Parabolic Function (in MPa) = 236.52 MPa\n", "ENDURANCE STRESS FROM Goodman Straight Line Relation (in MPa) = 371.71 MPa\n", "ENDURANCE STRESS FROM Soderberg Straight Line Relation (in MPa) = 557.78 MPa\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }