{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 16 : Superconductivity and Superconductors" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.1 page no : 431" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "b = 0;\n", "#m = -h\n", "#m = x*h\n", "# = = >> -h = x*h\n", "\n", "# Calculations\n", "x = -1;\t\t\t#from above realtions\n", "ur = x+1;\t\t\t#relative permeability\n", "\n", "# Results\n", "print \"Susceptibility of superconductor = \",x\n", "print \"Relative permeability of superconductor = \",ur\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Susceptibility of superconductor = -1\n", "Relative permeability of superconductor = 0\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.2 pageno : 434" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "ho = 0.0803;\t\t\t#in A/m\n", "t1 = 3.; \t\t\t#in K\n", "t2 = 10.;\t \t\t#in k\n", "tc = 7.17;\t\t \t#in K\n", "\n", "# Calculations\n", "hc1 = ho*(1-(t1/tc)**2);\n", "hc2 = ho*(1-(t2/tc)**2);\n", "\n", "# Results\n", "print \"Critical field at 3K (in A/m) = %f A/m\"%hc1\n", "print \"Critical field at 10K (in A/m) = %.4f A/m\"%hc2\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical field at 3K (in A/m) = 0.066242 A/m\n", "Critical field at 10K (in A/m) = -0.0759 A/m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.3 pageno : 434" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Calculations\n", "r = 1.*10**-3;\t\t\t#in m\n", "hc = 7.9*10**3;\t\t\t#in A/m\n", "ic = 2.*3.14*r*hc;\t\t\t#in m\n", "\n", "# Results\n", "print \"Critical current in superconducting state (in A) = %.2f A\"%ic\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical current in superconducting state (in A) = 49.61 A\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.4 pageno : 441" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "p = 11.4*10**3;\t\t\t#in kg/m**3\n", "aw = 207.2;\t\t\t#in kg/kg-mol\n", "v = 1200.;\t\t\t#in m/s\n", "\n", "# Calculations\n", "na = 60.23*10**26;\t\t\t#avagadro's no\n", "e = 1.6*10**-19;\t\t\t#charge in C\n", "m = 9.1*10**-31;\t\t\t#mass of electron in kg\n", "mo = 4*3.14*10**-7;\t\t\t#in H/m\n", "ne = 2*p*na/aw;\t\t\t#in per m**3\n", "ied = ne*e*v;\t\t\t#in A/m**2\n", "dp = (m/(mo*(6.62*10**28)*(e**2)))**(1./2);\n", "dp1 = round(dp*10**10,-1);\n", "\n", "# Results\n", "print \"Electron density (in per m**3) = %.2e electron/m**3\"%ne\n", "print \"Current density (in A/m**2) = %.2e A/m**2\"%ied\n", "print \"Depth of penetration (in angstorm) = %.1f A\"%dp1\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electron density (in per m**3) = 6.63e+29 electron/m**3\n", "Current density (in A/m**2) = 1.27e+14 A/m**2\n", "Depth of penetration (in angstorm) = 210.0 A\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.9 page no : 446" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "ho = 65.*10**3;\t\t\t#in A/m\n", "tc = 7.18;\t\t\t#in K\n", "t = 4.2;\t\t\t#in K\n", "r = 0.5*10**-3;\t\t\t#in m\n", "\n", "# Calculations\n", "hc = ho*(1-(t/tc)**2);\t\t\t#in A/m\n", "ic = 2*3.14*r*hc; \t\t\t#in A\n", "a = 3.14*r**2;\t\t \t#area in m**2\n", "j = ic/a;\t\t\t #in A/m**2\n", "\n", "# Results\n", "print \"current density (in A/m**2) = %.2e A/m**2\"%j\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "current density (in A/m**2) = 1.71e+08 A/m**2\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.10 page no : 446" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math \n", "\n", "# Variables\n", "hc1 = 21.;\t\t\t#in A/m\n", "hc2 = 10.;\t\t\t#in A/m\n", "tc = 7.;\t\t\t#in K\n", "t = 14.;\t\t\t#in K\n", "h = hc1/hc2;\n", "\n", "# Calculations\n", "#Determining critical temperature\n", "tc1 = math.sqrt(3626./11);\t\t\t#by quadratic eqn in the example\n", "ho = hc1/(1-(tc**2/tc1**2));\n", "t = 4.2;\t\t\t#in k\n", "hc = ho*(1-(t/tc1)**2);\n", "\n", "# Results\n", "print \"Critical field at 0 K (in A/m) = %.2f A/m\"%ho\n", "print \"Critical field At 4.2 k (in A/m) = %.3f A/m\"%hc\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical field at 0 K (in A/m) = 24.67 A/m\n", "Critical field At 4.2 k (in A/m) = 23.347 A/m\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 16.11 page no : 447" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# part (b)\n", "# Variables\n", "m = 39.6 # materials\n", "Tc = 7.19 # K\n", "\n", "# Calculation\n", "dp = math.sqrt(m**2 * (1 - 3**4/Tc**4))\n", "\n", "# Results\n", "print \"Depth of penetration at absolute zero dp(0) = %.3f nm\"%dp" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Depth of penetration at absolute zero dp(0) = 38.995 nm\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }