{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8.: Statics and Band theory of Solids" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.1, page no-208" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi Energy of metals\n", "\n", "import math\n", "# variable declaration\n", "d_cu=8.96*10**3 # density of cu\n", "a_cu=63.55 # Atomic weight of cu\n", "d_z=7.14*10**3 # density of Zn \n", "a_z=65.38 # Atomic weight of Zn\n", "d_al=2700 # density of Al\n", "a_al=27 # Atomic weight of Al \n", "avg=6.022*10**26 # Avogadro's number \n", "h=6.626*10**-34 # Planck's constant\n", "m=9.1*10**-31 # mass of an electrons\n", "e=1.6*10**-19 # charge of an electron\n", "\n", "\n", "\n", "#(i)\n", "\n", "# Calculations\n", "n_cu=d_cu*avg/a_cu\n", "e_cu=(h**2/(8*m))*(3*n_cu/math.pi)**(2.0/3.0)\n", "e_cu=e_cu/e\n", "\n", "#Result\n", "print(\"\\n(i)For Cu\\nThe electron concentration in Cu is %.4f*10^28 per m^3\\nFermi energy at 0 k =%.4f eV \"%(n_cu*10**-28,e_cu))\n", "\n", "#(ii)\n", "\n", "# calculations\n", "n_z=d_z*avg*2/a_z\n", "e_z=(h**2/(8*m))*(3*n_z/math.pi)**(2.0/3.0)\n", "e_z=e_z/e\n", "\n", "# Result\n", "print(\"\\n(ii)For Zn\\nThe electron concentration in Zn is %.5f*10^28 per m^3\\nFermi energy at 0 k =%.2f eV \"%(n_z*10**-28,e_z))\n", "\n", "#(iii)\n", "\n", "# Calculations\n", "n_al=d_al*avg*3/a_al\n", "e_al=(h**2/(8*m))*(3*n_al/math.pi)**(2.0/3.0)\n", "e_al=e_al/e\n", "\n", "#Result\n", "print(\"\\n(iii)For Al\\nThe electron concentration in Al is %.3f*10^28 per m^3\\nFermi energy at 0 k =%.2f eV \"%(n_al*10**-28,e_al))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "(i)For Cu\n", "The electron concentration in Cu is 8.4905*10^28 per m^3\n", "Fermi energy at 0 k =7.0608 eV \n", "\n", "(ii)For Zn\n", "The electron concentration in Zn is 13.15298*10^28 per m^3\n", "Fermi energy at 0 k =9.45 eV \n", "\n", "(iii)For Al\n", "The electron concentration in Al is 18.066*10^28 per m^3\n", "Fermi energy at 0 k =11.68 eV \n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.2, page no-210" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Density of states for Cu\n", "\n", "import math\n", "# variable declaration\n", "avg=6.023*10**26 # avogadro's number\n", "h=6.626*10**-34 # Planck's constant \n", "m=9.1*10**-31 # mass of an electron\n", "e=1.6*10**-19 # charge of an electron\n", "n=8.4905*10**28 # sphere of radius\n", "gam=6.82*10**27 # gamma\n", "\n", "# Calculations\n", "ef=(h**2/(8*m))*(3*n/math.pi)**(2.0/3.0)\n", "ef=ef/e\n", "x=(gam*math.sqrt(ef))/2\n", "\n", "#Result\n", "print(\"The density of states for Cu at the Fermi level for T = 0 K is %.0f*10^27 m^-3\"%(x*10**-27))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The density of states for Cu at the Fermi level for T = 0 K is 9*10^27 m^-3\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.3, page no-210" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Nordheims coeeficient\n", "\n", "import math\n", "#Variable declaration\n", "rni=63 # Resistivity of Ni\n", "rcr=129 # Resistivity of Cr\n", "k=1120 # Resistivity of 80% Ni + 20% Cr\n", "\n", "#Calculations\n", "c=(k*10**-9)/(0.8*(1-0.8))\n", "\n", "#Result\n", "print(\"The Nordheims coeeficient is %.0f *10^-6 Ohm-m\"%(c*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Nordheims coeeficient is 7 *10^-6 Ohm-m\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.4, page no-211" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Conductivity of Al\n", "\n", "import math\n", "#Variable declaaration\n", "d=2700 # Density of Al\n", "awt=27 # Atomic weight\n", "t=10**-14 # Relaxation time\n", "e=1.6*10**-19 # charge of an electron\n", "m=9.1*10**-31 # mass of an electron\n", "avg=6.022*10**26 # Avogadros number\n", "\n", "# calculation\n", "n=avg*d*3/awt\n", "sig=(n*t*e**2)/m\n", "\n", "#Result\n", "print(\"The conductivity of Al is %.4f*10^7 ohm-m.\"%(sig*10**-7))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conductivity of Al is 5.0823*10^7 ohm-m.\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.5, page no-211" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Fermi distribution function\n", "\n", "import math\n", "#variable declaration\n", "e1=0.01 # difference between energy level to fermi level in eV\n", "e=1.6*10**-19 # charge of an electron\n", "ed=e*e1 # difference between energy level to fermi level in J\n", "T=200 # Temperature\n", "k=1.38*10**-23 # Boltzmann's constant\n", "\n", "# Calculations\n", "E=1/(1+math.e**(ed/(T*k)))\n", "print(\"The Fermi distribution function for energy E is %.4f\"%E)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Fermi distribution function for energy E is 0.3590\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.6, page no-212" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi energy and fermi temperature\n", "\n", "import math\n", "#variable declaration\n", "v=0.86*10**6 # velocity of electron\n", "m=9.11*10**-31 # mass of electron\n", "e=1.6*10**-19 # electronic charge \n", "k=1.38*10**-23 # Boltzmann's constant \n", "\n", "#calculations\n", "E=(m*v**2)/2\n", "E= math.floor(E*10**22)/10**22\n", "T=E/k\n", "\n", "#Result\n", "print(\"\\nThe fermi energy is %.3f*10^-19 J\\nThe Fermi Temperature Tf is %.2f*10^4 K\"%(E*10**19,T*10**-4))\n", "# answer in the book for Temperature id 2.43 x 10^4" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The fermi energy is 3.368*10^-19 J\n", "The Fermi Temperature Tf is 2.44*10^4 K\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.7, page no-212" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# No of states lying between energy levels\n", "\n", "import math\n", "# variable declaration\n", "m=9.1*10**-31 # mass of electron\n", "dE=0.01 # energy interval\n", "h=6.63*10**-34 # planck's constant\n", "eF=3.0 # Fermi energy\n", "e=1.6*10**-19 # electronic charge\n", "\n", "#Calculations\n", "E1=eF*e\n", "E2=E1+e*dE\n", "n=(4*math.pi*(2*m)**(1.5))/h**3\n", "k=((2*0.3523/3)*((E2**(1.5)-(E1**(1.5)))))\n", "n=n*k\n", "\n", "#Result\n", "print(\"The number of states lying between the energy level is %.2f*10^25\"%(n*10**-25))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of states lying between the energy level is 4.14*10^25\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.8, page no-214" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Fermi Velocity\n", "\n", "import math\n", "#Variable declaration\n", "Tf=24600 # Fermi temperature of the metal\n", "m=9.11*10**-31 # mass of electron\n", "k=1.38*10**-23 # Boltzmann's constant\n", "\n", "#Calculations\n", "vf=math.sqrt(2*k*Tf/m)\n", "\n", "#Result\n", "print(\"The Fermi Velocity is %.4f *10^6 m/s\"%(vf*10**-6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Fermi Velocity is 0.8633 *10^6 m/s\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.9, page no-214" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Fermi energy\n", "\n", "import math\n", "#variable declaration\n", "n=18.1*10**28 # elecron density of electron\n", "h=6.62*10**-34 # Planck's constant\n", "m=9.1*10**-31 # mass of an electron\n", "e=1.6*10**-19 # electronic charge\n", "\n", "#calculations\n", "ef=((3*n/(8*math.pi))**(2.0/3.0))*((h**2)/(2*m))\n", "ef=ef/e\n", "ef=math.ceil(ef*100)/100\n", "\n", "#Result\n", "print(\"The Fermi energy at 0 K is %.2f eV \"%(ef))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Fermi energy at 0 K is 11.68 eV \n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.10, page no-215" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Fermi energy \n", "\n", "import math\n", "#variable declaration\n", "n=18.1*10**28 # elecron density of electron\n", "h=6.62*10**-34 # Planck's constant\n", "m=9.1*10**-31 # mass of an electron\n", "e=1.6*10**-19 # electronic charge\n", "\n", "#calculations\n", "ef=((3*n/(8*math.pi))**(2.0/3.0))*((h**2)/(2*m))\n", "ef=ef/e\n", "ef=math.ceil(ef*100)/100\n", "\n", "#result\n", "print(\"The Fermi energy at 0 K is %.2f eV \"%ef)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Fermi energy at 0 K is 11.68 eV \n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.11, page no-215" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Temperature calculation\n", "\n", "import math\n", "#variable declaration\n", "e=1.6*10**-19 # electronic charge\n", "Ed=0.5*e # difference between energy level to fermi level\n", "k=1.38*10**-23 # Boltzmann's constant\n", "x=0.01 # probability\n", "\n", "#Calculaations\n", "T=Ed/(k*math.log((1/x)-1))\n", "\n", "#Result\n", "print(\"Temperature at which there is 1%% probability that a state with 0.5 eV energy occupied above the Fermi energy level is %.1f K\"%T)\n", "#answer is not matching with the answer given in the book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature at which there is 1% probability that a state with 0.5 eV energy occupied above the Fermi energy level is 1261.6 K\n" ] } ], "prompt_number": 49 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.14, page no-218" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#energies for the occupying of electrons\n", "import math\n", "\n", "#variable declaration\n", "ef=2.1 # Fermi energy\n", "k=1.38*10**-23 # Boltzmann's constant\n", "T=300 # Temperature\n", "e=1.6*10**-19 # Electronic charge\n", "\n", "#calculations\n", "\n", "#(i)\n", "p1=0.99 # probability\n", "E1=ef+(k*T*math.log(-1+1/p1))/e\n", "\n", "#(ii)\n", "p2=0.01 # probability\n", "E2=ef+(k*T*math.log(-1+1/p2))/e\n", "\n", "#(iii)\n", "p3=0.5 # probability\n", "E3=ef+(k*T*math.log(-1+1/p3))/e\n", "\n", "#Result\n", "\n", "print(\"\\nThe energies for the occupying of electrons at %d K for the probability of %.2f are %.2f eV\"%(T,p1,E1))\n", "\n", "print(\"\\nThe energies for the occupying of electrons at %d K for the probability of %.2f are %.2f eV\"%(T,p2,E2))\n", "\n", "print(\"\\nThe energies for the occupying of electrons at %d K for the probability of %.2f are %.2f eV\"%(T,p3,E3))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The energies for the occupying of electrons at 300 K for the probability of 0.99 are 1.98 eV\n", "\n", "The energies for the occupying of electrons at 300 K for the probability of 0.01 are 2.22 eV\n", "\n", "The energies for the occupying of electrons at 300 K for the probability of 0.50 are 2.10 eV\n" ] } ], "prompt_number": 53 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.15, page no-219" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi distribution function\n", "\n", "import math\n", "# Variable declarations\n", "e=1.6*10**-19 # Electronic charge\n", "ed=0.02*e # difference between energy level to fermi level\n", "T1=200 # Temperature 1\n", "T2=400 # Temperature 2\n", "k=1.38*10**-23 # Boltzmann's constant\n", "\n", "#Calculations\n", "fe1=1/(1+math.e**(ed/(k*T1)))\n", "fe2=1/(1+math.e**(ed/(k*T2)))\n", "\n", "#Result\n", "print(\"\\nThe Fermi distribution function for the given energy at %d K is %.5f\"%(T1,fe1))\n", "print(\"\\nThe Fermi distribution function for the given energy at %d K is %.4f\"%(T2,fe2))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The Fermi distribution function for the given energy at 200 K is 0.23877\n", "\n", "The Fermi distribution function for the given energy at 400 K is 0.3590\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.16, page no-220" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi energy for given metal\n", "\n", "import math\n", "#Variaable declaration\n", "d=10500 # Density of the metal\n", "avg=6.022*10**26 # Avogadro's number\n", "awt=107.9 # Atomic weight of metal\n", "h=6.62*10**-34 # Planck's constant\n", "m=9.1*10**-31 # mass of an electron\n", "e=1.6*10**-19 # electronic charge\n", "\n", "#Calculattions\n", "n=d*avg/awt\n", "ef=((3*n/(8*math.pi))**(2.0/3.0))*((h**2)/(2*m))\n", "ef=ef/e\n", "\n", "#Result\n", "print(\"The Fermi energy for given metal is %.1f eV \"%ef)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Fermi energy for given metal is 5.5 eV \n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.17, page no-221" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi distribution function \n", "\n", "import math\n", "#Variable declaration\n", "e=1.6*10**-19 # electronic charge\n", "ed=0.2*e # difference between energy level to Fermi level\n", "T1=300 # Temperature 1\n", "T2=1000 # Temperature 2\n", "k=1.38*10**-23 # Boltzmann's constant\n", "\n", "#Calculations\n", "fe1=1/(1+math.e**(ed/(k*T1)))\n", "fe2=1/(1+math.e**(ed/(k*T2)))\n", "\n", "#Result\n", "print(\"\\nThe Fermi distribution function for the given energy at %d K is %.7f\"%(T1,fe1))\n", "print(\"\\nThe Fermi distribution function for the given energy at %d K is %.4f\"%(T2,fe2))\n", "# Answer for 300 K is wrong in the book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The Fermi distribution function for the given energy at 300 K is 0.0004395\n", "\n", "The Fermi distribution function for the given energy at 1000 K is 0.0896\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.18, page no-221" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Free electrons concentration\n", "\n", "import math\n", "#Variable declarations\n", "h=6.62*10**-34 # Planck's constant\n", "m=9.1*10**-31 # Mass of electron\n", "e=1.6*10**-19 # Charge of an electron\n", "ef=3*e # Fermi Energy\n", "\n", "#Calculations\n", "k=((3/(8*math.pi))**(2.0/3.0))*((h**2)/(2*m))\n", "k=ef/k\n", "n=k**(1.5)\n", "\n", "#Result\n", "print(\"The number of free electrons concentration in metal is %.2f *10^28 per cubic meter \"%(n*10**-28))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of free electrons concentration in metal is 2.36 *10^28 per cubic meter \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.19, page no-221" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Free electrons concentration in metal \n", "\n", "import math\n", "#Variable declaration\n", "h=6.626*10**-34 # Planck's constant\n", "m=9.1*10**-31 # Mass of electron\n", "e=1.6*10**-19 # Charge of electron\n", "ef=5.5*e # Fermi energy\n", "\n", "# Calculation\n", "k=((3/(8*math.pi))**(2.0/3.0))*((h**2)/(2*m))\n", "k=ef/k\n", "n=k**(1.5)\n", "\n", "#Result\n", "print(\"The number of free electrons concentration in metal is %.3f * 10^28 per cubic meter \"%(n*10**-28))\n", "#Answer is matching with the answer given in the book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of free electrons concentration in metal is 5.837 * 10^28 per cubic meter \n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.20, page no-221" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# electrons concentration and termal velocity of electrons\n", "\n", "import math\n", "#variable declaration\n", "h=6.626*10**-34 # Planck's constant\n", "m=9.1*10**-31 # mass of electron\n", "e=1.6*10**-19 # charge of electron\n", "ef=7*e # Fermi energy\n", "\n", "#calculations\n", "k=((3/(8*math.pi))**(2.0/3.0))*((h**2)/(2*m))\n", "k=ef/k\n", "n=k**(1.5)\n", "vth=math.sqrt(2*ef/m)\n", "\n", "#Result\n", "print(\"The number of free electrons concentration in metal is %.2f *10^28 per cubic meter \"%(math.ceil(n*10**-28*10**2)/10**2))\n", "print(\"\\nThe termal velocity of electrons in copper is %.3f *10^6 m/s\"%(math.floor(vth*10**-6*10**3)/10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of free electrons concentration in metal is 8.39 *10^28 per cubic meter \n", "\n", "The termal velocity of electrons in copper is 1.568 *10^6 m/s\n" ] } ], "prompt_number": 41 } ], "metadata": {} } ] }