{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3: Characterisation of material" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.1, page no-89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# wavelength and frequency of X-rays\n", "\n", "import math\n", "#Variable Declaration\n", "h=6.626*10**-34 # Planck's constant\n", "e=1.6*10**-19 # charge of an electron\n", "c=3.0*10**8 # speed of light\n", "v=10000.0 # Applied potential difference\n", "\n", "#Calculation\n", "lam_min=(h*c)/(e*v)\n", "V=c/lam_min\n", "\n", "#Result\n", "print('\\n(i)\\nThe wavelength of X-rays emitted Lamda_min = %.2f A\u00b0\\n(ii)\\nThe frequency of X-ray beam emitted is %.1f*10^18 Hz'%(lam_min*10**10,V*10**-18))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "(i)\n", "The wavelength of X-rays emitted Lamda_min = 1.24 A\u00b0\n", "(ii)\n", "The frequency of X-ray beam emitted is 2.4*10^18 Hz\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2, page no-89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# wavelength and velocity of electrons\n", "\n", "import math\n", "#Variable Declaration\n", "\n", "v=10000.0 # Applied potential difference\n", "i=2*10**-3 # Current\n", "e=1.6*10**-19 # charge of an electron\n", "t=1.0 # time in second\n", "m=9.1*10**-31 # mass of an electrons\n", "\n", "#(i)\n", "\n", "#Calculation\n", "n=i*t/e\n", "\n", "#Result\n", "print('The no of electrons striking the target per second =%.2f *10^16'%(n*10**-16))\n", "\n", "#(ii)\n", "\n", "#Calculation\n", "v1=math.sqrt(2*e*v/m)\n", "\n", "#(iii)\n", "\n", "#Calculation\n", "lam=12400.0/v\n", "\n", "#Result\n", "print('\\n(ii)\\nThe velocity of electron =%.2f*10^7 m/s\\n(iii)\\nWavelength of x-rays=%.2f A\u00b0'%(v1*10**-7,lam))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The no of electrons striking the target per second =1.25 *10^16\n", "\n", "(ii)\n", "The velocity of electron =5.93*10^7 m/s\n", "(iii)\n", "Wavelength of x-rays=1.24 A\u00b0\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3, page no-90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# wavelength and angle for 2nd order bragg reflection\n", "\n", "import math\n", "#variable Declaration\n", "d=5.6534*10**-10 # interplanar spacing\n", "theta=13.6666 # glancing angle\n", "n=1.0 # order of diffraction\n", "\n", "#(i)\n", "#Calculation\n", "lam=2*d*math.sin(theta*math.pi/180)/n\n", "\n", "#Result \n", "print('\\n(i)\\nWavelength of the X-rays, Lambda =%.3f*10^-10 m'%(lam*10**10))\n", "\n", "#(ii)\n", "#calculation\n", "n=2.0\n", "theta=math.asin(n*lam/(2*d))\n", "theta=theta*180/math.pi\n", "\n", "#Result\n", "print('\\n(ii)\\n2nd order Bragg reflection at angle Theta2 = %f\u00b0'%theta)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "(i)\n", "Lambda =2.671*10^-10 m\n", "\n", "(ii)\n", "2nd order Bragg reflection at angle Theta2 = 28.199528\u00b0\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4, page no-91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Grating spacing and glancing angle\n", "\n", "import math\n", "#Variable Declaration\n", "v=24800.0 # Applied potential difference\n", "n=1.0 # order of diffraction\n", "lam=1.54*10**-10 # wavelength of the X-ray beam\n", "ga=15.8 # glancing angle\n", "\n", "#(i)\n", "\n", "#calculation\n", "d=n*lam/(2*math.sin(ga*math.pi/180))\n", "\n", "#Result\n", "print('\\n(i)\\nGrating spacing for NaCl crystal =%.3f *10^-10 m'%(d*10**10))\n", "\n", "#(ii)\n", "\n", "#calculation\n", "lam_min=12400.0/v\n", "lam_min=lam_min*10**-10\n", "theta=math.asin(n*lam_min/(2*d))\n", "theta=theta*180/math.pi\n", "\n", "#Result\n", "print('\\n(ii)\\nGlancing angle for minimum wavelength = %.3f degrees'%theta)\n", "# Glancing angle in the book is in the degree second format" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "(i)\n", "Grating spacing for NaCl crystal =2.828 *10^-10 m\n", "\n", "(ii)\n", "Glancing angle for minimum wavelength = 5.072 degrees\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5, page no-92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# wavelength of radiation\n", "\n", "import math\n", "#variable Declaration\n", "lam=0.7078 *10**-10 # wavelength of Ka line from molybdenum\n", "wt=42.0 # Atomic number of molybdenum\n", "wt1=48.0 # Atomic number of cadmium\n", "\n", "#calculation\n", "lam1=(lam*(wt-1)**2)/(wt1-1)**2\n", "\n", "#Result\n", "print('\\nWavelength of cadmium radiation is %.4f A\u00b0'%(lam1*10**10))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Wavelength of cadmium radiation is 0.5386 A\u00b0\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6, page no-92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Energy of thermal neutron\n", "\n", "import math\n", "#Variable Declaration\n", "lam=10.0**-10 # Wavelength of neutron\n", "h=6.626*10**-34 # Planck's constant\n", "m=1.675*10**-27 # mass of an electron\n", "e1=1.602*10**-19 # charge of an electron\n", "\n", "#calculation\n", "e=(h**2)/(2*m*lam**2)\n", "e=e/e1\n", "\n", "#Result\n", "print('\\nThe energy of thermal neutron with wavelength 1 A\u00b0 is %.2f eV'%e)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The energy of thermal neutron with wavelength 1A\u00b0 is 0.08 eV\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.8, page no-94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# effect of temperature on wavelength\n", "\n", "import math\n", "#Variable Declaration\n", "lam=0.1 # Wavelength of neutron in nm\n", "\n", "#calculation\n", "T=(2.516**2)/(lam)**2\n", "\n", "#Result\n", "print('Temperature of thermal neutron corresponding to 1 A\u00b0 is %.0f K'%T)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature of thermal neutron corresponding to 1 A\u00b0 is 633 K\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }