{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 18: Dielectric Materials" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.1, page no-460" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Relative permitivity of KCl\n", "\n", "import math\n", "# Variable declaration\n", "atom=4 # number of atoms \n", "kci=0.629*10**-9 # LAttice parameter of KCl \n", "alfk=1.264*10**-40 # electronic polarisability for K+ ion\n", "alfCl=3.408*10**-40 # electronic polarisability for Cl- ion\n", "eps0=8.854*10**-12 # permitivity of free space\n", "\n", "# Calculations\n", "pol=alfk+alfCl\n", "N=atom/kci**3\n", "epsr=(N*pol/eps0)+1\n", "\n", "#Result\n", "print(\"\\nThe electronic polarisability for KCL = %.3f *10^-40 F m^2\\n\"%(pol*10**40))\n", "print(\"\\nThe no of Dipoles per m^3 = %.3f * 10^28 atoms m^-3\\n\"%(N/10**28))\n", "print(\"\\nThe dielectric constant of KCL is %.3f\"%epsr)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The electronic polarisability for KCL = 4.672 *10^-40 F m^2\n", "\n", "\n", "The no of Dipoles per m^3 = 1.607 * 10^28 atoms m^-3\n", "\n", "\n", "The dielectric constant of KCL is 1.848\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.2, page no-460" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# electronic polarisability\n", "\n", "import math\n", "#variable declarations\n", "r=0.12*10**-9 # atomic radius of Se\n", "eps=8.854*10**-12 # permitivity of free space \n", "\n", "# Calculations\n", "alf=4*math.pi*eps*r**3\n", "\n", "# Result\n", "print(\"The electronic polarisability of an isolated Se is %.4f * 10^-40 F m^2\"%(alf*10**40))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarisability of an isolated Se is 1.9226 * 10^-40 F m^2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.3, page no-461" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#electronic to ionic polarability ratio\n", "\n", "import math\n", "# Variable declaration\n", "n=2.69 # refraction index\n", "er=4.94 # dielectric cnstant\n", "\n", "# calculations\n", "alfi_by_alfe=(((n+2)*(er-1))/((er+2)*(n-1)))-1\n", "\n", "# Result\n", "print(\"The ratio of the electronic to ionic polarability is %.4f\"%(1/alfi_by_alfe))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of the electronic to ionic polarability is 1.7376\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.4, page no-462" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# dielectric constant\n", "\n", "import math\n", "#variable declaration\n", "N= 2.7*10**25 # number of atoms\n", "alfe=0.35*10**-40 # electronic polarisability \n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "# calculations\n", "epsr=(1+(2*N*alfe)/(3*eps))/(1-(N*alfe)/(3*eps))\n", "\n", "# Result\n", "print(\"The dielectric constant of Ne gas is %.8f\"%epsr)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dielectric constant of Ne gas is 1.00010674\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.5, page no-462" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# charge on the capacitor\n", "\n", "import math\n", "# Variable declaration\n", "eps=8.85*10**-12 # permitivity of free space\n", "epsr=6 # relative permitivity of dielectric\n", "A=5*10**-4 # Area of the capacitor plate \n", "d=1.5*10**-3 # distance between the plates\n", "v=100 # Applied voltage\n", "\n", "# calculations\n", "Q=eps*epsr*A*v/d\n", "\n", "# Result\n", "print(\"The charge on the capacitor is %.2f * 10^-9 C\"%(Q*10**9))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The charge on the capacitor is 1.77 * 10^-9 C\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.6, page no-463" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# dielectric constant\n", "\n", "import math\n", "# variable declaration\n", "N=2.7*10**25 # Number of Ar atoms\n", "d=0.384*10**-9 # diameter of Ar atom\n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "# calculations\n", "alfe=4*math.pi*eps*d**3\n", "alfe=alfe*10**-2 # correction\n", "epsr=(1+((2*N*alfe)/(3*eps)))/(1-((N*alfe)/(3*eps)))\n", "\n", "# Result\n", "print(\"The dielectric constant of Ar is %.8f\"%(epsr))\n", "# correction is to match the answer in the book \n", "# answer for alfe is given as 0.63 * 10^-40 but it is actually 0.63* 10^-38." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dielectric constant of Ar is 1.00019213\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.7, page no-464" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Energy stored\n", "\n", "import math\n", "# Variable declaration\n", "c=2*10**-6 # capacitance\n", "epsr=80 # permitivity of the dielectric\n", "v=1000 # Applied voltage\n", "\n", "#Calculations\n", "E1=(c*v**2)/2\n", "c0=c/epsr\n", "E2=(c0*v**2)/2\n", "E=E1-E2\n", "\n", "# Result\n", "print(\"\\nThe Energy stored in capacitor =%.0f J\"%E1)\n", "print(\"\\nThe energy stored in polarising the capacitor = %.4f J\"%E)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The Energy stored in capacitor =1 J\n", "\n", "The energy stored in polarising the capacitor = 0.9875 J\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.8, page no-464" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# nternal field to applied field ratio\n", "\n", "import math\n", "# Variable declaration\n", "N=5*10**28 # no of atoms present per m^3\n", "alfe=2*10**-40 # Polarisability \n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "\n", "# Calculations\n", "P=N*alfe\n", "E_ratio=1/(1-(P/(3*eps)))\n", "\n", "# Result\n", "print(\"The ratio of the internal field to the applied field = %.4f\"%E_ratio)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The ratio of the internal field to the applied field = 1.6038\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.9, page no-465" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# relative permitivity\n", "\n", "import math\n", "# Variable declaration\n", "E=1000 # Applied electric field\n", "P=4.3*10**-8 # Polarisation\n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "# calculations\n", "epsr=1+P/(eps*E)\n", "\n", "#Result\n", "print(\"The relative permitivity of NaCl is %.2f\"%epsr)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The relative permitivity of NaCl is 5.86\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.10, page no-466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#polarisability of argon atom\n", "\n", "import math\n", "# Variable declaration\n", "epsr=1.0024 # relative permitivity\n", "N=2.7*10**25 # Number of atoms\n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "# calculations\n", "alfe=eps*(epsr-1)/N\n", "\n", "#Result\n", "print(\"The polarisability of argon atom is %.1f * 10^-40 F m^2\"%(alfe*10**40))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The polarisability of argon atom is 7.9 * 10^-40 F m^2\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.11, page no-466" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# electronic polarisability\n", "\n", "import math\n", "# Variable declaration\n", "epsr=1.0000684 # Dielectric constant of the gas at NTP\n", "N=2.7*10**25 # Number of He atoms\n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "#calculations\n", "alfe=eps*(epsr-1)/N\n", "\n", "#Result\n", "print(\"The electronic polarisability of He atom at NTP is %.3f * 10^-41 F m^2\"%(alfe*10**41))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarisability of He atom at NTP is 2.243 * 10^-41 F m^2\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.12, page no-467" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# electronic polarisability\n", "\n", "import math\n", "# variable declaration\n", "epsr=12 # relative dielectric constant of material\n", "N=5*10**28 # number of atoms in the element\n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "#Calculations\n", "alfe=eps*(epsr-1)/N\n", "\n", "# result\n", "print(\"The electronic polarisability of given element is %.3f * 10^-39 F m^2\"%(math.floor(alfe*10**39*1000)/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarisability of given element is 1.947 * 10^-39 F m^2\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.13, page no-467" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# energy stored in dielectric\n", "\n", "import math\n", "# variable declaration\n", "c=2*10**-6 # capacitance of plate condenser\n", "v=1000 # applied voltage\n", "epsr=100 # dielectric permitivity\n", "\n", "# calculations\n", "E=(c*v**2)/2\n", "c0=c/epsr\n", "e2=(c0*v**2)/2\n", "E1=E-e2\n", "\n", "# Result\n", "print(\"The energy stored in dielectric is %.2f J\"%E1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The energy stored in dielectric is 0.99 J\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.14, page no-468" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# electronic polarisability\n", "\n", "import math\n", "#variable declaration\n", "epsr=3.4 # dielectric constant of sulphur \n", "eps=8.854*10**-12 # permitivity of free space\n", "d=2.07*10**3 # density of sulphur \n", "w=32.07 # Atomic weight\n", "Avg=6.023*10**23 # avogadro's number\n", "\n", "# calculations\n", "N=Avg*10**3*d/w\n", "N= (math.ceil(N*10**-26))/10**-26\n", "alfe=3*eps*(epsr-1)/(N*(epsr+2))\n", "\n", "#Result\n", "print(\"The electronic polarisability of sulphur is %.3f * 10^-40 F.m^2\"%(alfe*10**40))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarisability of sulphur is 3.035 * 10^-40 F.m^2\n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.15, page no-469" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# charge stored and polarisation produced in the plate\n", "\n", "import math\n", "#variable declaration\n", "A=6.45*10**-4 # Area of the capacitor plate\n", "d=2*10**-3 # distance between plates\n", "epsr=6 # relative permitivity \n", "v=10 # applied voltage \n", "eps=8.854*10**-12 # permitivity in free space\n", "\n", "\n", "# calculations\n", "c=eps*epsr*A/d\n", "q=c*v\n", "E=v/d\n", "p=eps*(epsr-1)*E\n", "\n", "# Result\n", "print(\"Capacitance of Capacitor = %.2f pF\"%(c*10**12))\n", "print(\"\\ncharge stored on the plate is %.2f *10^-11 C\"%(q*10**11))\n", "print(\"\\nPolarisation produce in the plate is %.3f *10^-7 Cm^-2\"%(math.ceil(p*10**7*1000)/1000))\n", "# answer forstored charge is wrong in the book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance of Capacitor = 17.13 pF\n", "\n", "charge stored on the plate is 17.13 *10^-11 C\n", "\n", "Polarisation produce in the plate is 2.214 *10^-7 Cm^-2\n" ] } ], "prompt_number": 53 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.16, page no-470" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Polarisation produced in NaCl\\\n", "\n", "import math\n", "# Variable declaration\n", "E=600*10**3 # electric field strength\n", "eps=8.854*10**-12 # permitivity in free space \n", "epsr=6 # dielectric constant of sodium chloride\n", "\n", "# calculations\n", "p=eps*(epsr-1)*E\n", "\n", "# Result\n", "print(\"Polarisation produced in NaCl is %.3f *10^-5 C.m^-2\"%(p*10**5))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Polarisation produced in NaCl is 2.656 *10^-5 C.m^-2\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.17, page no-470" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Relative permitivity\n", "\n", "import math\n", "# Variable declaration\n", "E=1000 # applied electric field\n", "p=4.3*10**-8 # Polarisation \n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "#Calculations\n", "epsr=1+p/(eps*E)\n", "\n", "#Result\n", "print(\"Relative permitivity of NaCl is %.2f\"%epsr)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Relative permitivity of NaCl is 5.86\n" ] } ], "prompt_number": 55 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.18, page no-471" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# voltage across capacitor and electric field strength\n", "\n", "import math\n", "# variable declaration\n", "A=1000*10**-6 # Area of the capacitor plate\n", "d=5*10**-3 # distance between the plate\n", "epsr=4 # relative permitivity of the dielectric\n", "Q=3*10**-10 #charge on the capacitor \n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "# Calculations\n", "c=(eps*epsr*A)/d\n", "v=Q/c\n", "E=v/d\n", "\n", "# Result\n", "print(\"The voltage across capacitor is %.2f V\\nThe electric field strength is %d V/m\"%(v,E))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage across capacitor is 42.35 V\n", "The electric field strength is 8470 V/m\n" ] } ], "prompt_number": 57 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.19, page no-472" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# electronic polarisability\n", "\n", "import math\n", "# Variable declaration\n", "epsr=1.0000684 # dielectric constant of the gas at NTP\n", "N=2.7*10**25 # Number of He atoms \n", "eps=8.85*10**-12 # permitivuty of free space\n", "\n", "# calculations\n", "alfe=eps*(epsr-1)/N\n", "\n", "# Result\n", "print(\"The electronic polarisability of He atoms at NTP is %.3f *10^-41 F.m^2\"%(alfe*10**41))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The electronic polarisability of He atoms at NTP is 2.242 *10^-41 F.m^2\n" ] } ], "prompt_number": 61 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.20, page no-472" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Capacitance and electric field strength\n", "\n", "import math\n", "# Variable declaration\n", "A=3*10**-3 # area of the capacitor plate\n", "d=1*10**-3 # distance between the plate\n", "epsr=3.5 # relative permitivity of the dielectric\n", "Q=20*10**-9 # charge on the capacitor\n", "eps=8.85*10**-12 # permitivity of free space\n", "\n", "# calculations\n", "c=eps*epsr*A/d\n", "E=Q/(c*d)\n", "\n", "# Result\n", "print(\"The capacitance of capacitor is %.2f pF\"%(math.ceil(c*10**14)/100))\n", "print(\"The electric field strength is %.2f*10^3 V/m\"%(math.floor(E*10**-1)/100))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The capacitance of capacitor is 92.93 pF\n", "The electric field strength is 215.22*10^3 V/m\n" ] } ], "prompt_number": 71 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.21, page no-473" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# capacitance, stored charge, polarisation and dielectric displacement\n", "\n", "import math\n", "# variable declaration\n", "A=7.45*10**-4 # Area of the capacitor plates\n", "d=2.45*10**-3 # distance between the plates\n", "epsr=6 # relative permitivity of the dielectric \n", "v=10 # applied voltage \n", "eps=8.85*10**-12 # permitivity of free space\n", "\n", "#Calculations\n", "c=eps*epsr*A/d\n", "Q=c*v\n", "E=v/d\n", "p=eps*(epsr-1)*E\n", "D=eps*epsr*E\n", "\n", "# Result\n", "print(\"\\nThe capacitance of the capacitor is %.3f pF\"%(c*10**12))\n", "print(\"\\nCharge stored on capacitor = %.3f *10^-11 C\\n\\nE=%.2f*10^3 V/m\"%(Q*10**11,E*10**-3))\n", "print(\"\\nPolarisation=%.3f*10^-7 C.m^-2\\n\\ndielectric displacement = %.3f*10^-7 C.m^-2\"%(p*10**7,D*10**7))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The capacitance of the capacitor is 16.147 pF\n", "\n", "Charge stored on capacitor = 16.147 *10^-11 C\n", "\n", "E=4.08*10^3 V/m\n", "\n", "Polarisation=1.806*10^-7 C.m^-2\n", "\n", "dielectric displacement = 2.167*10^-7 C.m^-2\n" ] } ], "prompt_number": 77 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.22, page no-475" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# polarisation produced\n", "\n", "import math\n", "#variable declaration\n", "E=500 # electric field strength\n", "epsr=6 # dielectric constant of sodium cloride\n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "# calculations\n", "p=eps*(epsr-1)*E\n", "\n", "# Result\n", "print(\"The polarisation produced in NaCl is %.3f * 10^-8 C.m^-2\"%(math.ceil(p*10**11)/1000))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The polarisation produced in NaCl is 2.214 * 10^-8 C.m^-2\n" ] } ], "prompt_number": 91 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.23, page no-475" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# polarisation produced in NaCl\n", "\n", "import math\n", "#Variable declaration\n", "E=500 # electric field strength\n", "epsr=15 # dielectric constant of sodium cloride \n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "#calculations\n", "p=eps*(epsr-1)*E\n", "\n", "#Result\n", "print(\"The polarisation produced in NaCl is %.3f * 10^-8 C.m^-2\"%(p*10**8))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The polarisation produced in NaCl is 6.198 * 10^-8 C.m^-2\n" ] } ], "prompt_number": 92 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.24, page no-475" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Voltage across capacitor\n", "\n", "import math\n", "#variable declaration\n", "A=650*10**-6 # Area of the capacitor plate \n", "d=4 *10**-3 # distance between the plates\n", "epsr=3.5 # relative permitivity of the dielectric\n", "eps=8.85*10**-12 # permitivity of free space \n", "q=2*10**-10 # charge on the capacitor\n", "\n", "# calculations\n", "v=q*d/(eps*epsr*A)\n", "\n", "# Result\n", "print(\"The voltage across capacitor is %.2f V\"%v)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage across capacitor is 39.73 V\n" ] } ], "prompt_number": 97 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.25, page no-476" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# charge on the capacitor\n", "\n", "import math\n", "# variable declaration\n", "A=5*10**-4 # Area of the capacitor plates\n", "d=1.5*10**-3 # Distance between the plates\n", "epsr=6 # Relative permitivity of the dielectric\n", "v=100 # Applied voltage\n", "eps=8.854*10**-12 # permitivity of free space\n", "\n", "#calculation\n", "q=eps*epsr*A*v/d\n", "\n", "#Result\n", "print(\"The charge on the capacitor is %.2f *10^-9 C\"%(q*10**9))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The charge on the capacitor is 1.77 *10^-9 C\n" ] } ], "prompt_number": 98 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 18.26, page no-476" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#dielectric constant\n", "\n", "import math\n", "#variable declaration\n", "d=2.08*10**3 # density of sulphur\n", "wt=32 # atomic weight of sulphur\n", "ep=3.28*10**-40 # electronic polarisability\n", "eps=8.854*10**-15 # permeability of free space\n", "\n", "# Calculations\n", "k=(3*10**28*7*10**-40)/(3*eps)\n", "epsr=2.5812/(1-0.7906)\n", "\n", "# result\n", "print(\"The dielectric constant of the given material is %.3f\"%epsr)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dielectric constant of the given material is 12.327\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }