{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12: Thermal Properties" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.1, page no-350" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Change in length due to heating\n", "\n", "import math\n", "#Variable Declaration\n", "alfe=8.8*10**-6 # linear coefficient of thermal expansion for alumina\n", "lo=0.1 # length of the alumina rod\n", "delT=973.0 # difference in temperature\n", "\n", "#Calculation\n", "delL=alfe*lo*delT\n", "\n", "#Result\n", "print('The change in length produced by heating is %.3f mm'%(delL*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The change in length produced by heating is 0.856 mm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.2, page no-350" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Change in length due to heating\n", "\n", "import math\n", "#Variable Declaration\n", "alfe=5.3*10**-6 # linear coefficient of thermal expansion or alumina\n", "lo=0.1 # length of the alumina rod\n", "delT=973.0 # difference in temperature\n", "\n", "#Calculation\n", "delL=alfe*lo*delT\n", "\n", "#Result\n", "print('The change in length produced by heating is %.3f mm'%(delL*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The change in length produced by heating is 0.516 mm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 12.3, page no-351" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Steady state heat Transfer\n", "\n", "import math\n", "#Variable Declaration\n", "k=371.0 # Thermal conductivity of copper in J/msk\n", "delT=50.0 # change in temperature\n", "delx=10*10**-3 # change in thickness of the copper's sheet \n", "\n", "#Calculation\n", "ht=k*delT/delx\n", "\n", "#Result\n", "print('The steady state heat transfer of 10 mm copper sheet is %.3f *10^6 J.m^-2.s^-1'%(ht*10**-6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The steady state heat transfer of 10 mm copper sheet is 1.855 *10^6 J.m^-2.s^-1\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.4, page no-351" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Compression Stress due to Heating\n", "\n", "import math\n", "#Variable Declaration\n", "alfe=8.8*10**-6 # linear coefficient of thermal expansion for alumina\n", "t1=1300.0 # Temperature 1\n", "t2=327.0 # Temperature 2\n", "E=370.0 # modulus of elasticity\n", "\n", "\n", "#Calculation\n", "delT=t1-t2\n", "ep=alfe*delT\n", "sig=ep*E\n", "\n", "#Result\n", "print('\\nThe unconstrained thermal expansion produced by the heating is %.4f *10^-3'%(ep*10**3))\n", "print('\\nthe compression stress produced by heating is %.3f GPa'%(math.ceil(sig*1000)/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The unconstrained thermal expansion produced by the heating is 8.5624 *10^-3\n", "\n", "the compression stress produced by heating is 3.169 GPa\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 12.5, page no-352" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Heat flux transmitted\n", "\n", "import math\n", "#Variable Declaration\n", "K=120.0 # thermal conductivity of brass\n", "t2=423.0 # Temperature 2\n", "t1=323.0 # Temperature 1\n", "delT=t2-t1 # temperature difference\n", "delx=7.5*10**-3 # change in thickness of the brass's sheet\n", "A=0.5 # Area of the sheet\n", "\n", "#Calculation\n", "Q=K*A*(delT/delx)\n", "hph=Q*3600\n", "\n", "#Result\n", "print('The heat flux transmitted through a sheet per hour is %.2f *10^9 J.h^-1'%(hph*10**-9))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat flux transmitted through a sheet per hour is 2.88 *10^9 J.h^-1\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.6, page no-353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Young's Modulus\n", "\n", "import math\n", "#Variable Declaration\n", "alfe=17*10**-6 # linear coefficient of thermal expansion for copper\n", "t2=293.0 # Temperature 2\n", "t1=233.0 # Temperature 1\n", "delT=t2-t1 # temperature difference\n", "st=119.0 # Maximum thermally induced stress\n", "\n", "#Calculation\n", "k=alfe*delT\n", "E=(st*10**6)/k\n", "\n", "#Result\n", "print('\\nThe strain produced in te rod is %.2f * 10^-3'%(k*10**3))\n", "print('\\nThe Youngs Modulus of the rod is %.1f GPa'%(E*10**-9))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The strain produced in te rod is 1.02 * 10^-3\n", "\n", "The Youngs Modulus of the rod is 116.7 GPa\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.7, page no-353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Temperature Change\n", "\n", "import math\n", "#Variable Declaration\n", "lo=11.6 # length of the steel rod\n", "delx=5.4*10**-3 # difference in length\n", "alfL=12*10**-6 # Linear coefficient of thermal expansion for steel\n", "\n", "#Calculation\n", "delT=delx/(lo*alfL)\n", "\n", "#Result\n", "print('The maximum temperature cange can withstand without any thermal stress is %.2f K'%delT)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum temperature cange can withstand without any thermal stress is 38.79 K\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.8, page no-354" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#compressive Sress\n", "\n", "import math\n", "#Variable Declaration\n", "lo=0.35 # length of the Al rod\n", "alfe=23.6*10**-6 # Linear coefficient of thermal expansion for Al\n", "t2=358.0 # temperature 2\n", "t1=288.0 # temperature 1\n", "delT=t2-t1 # temperature difference\n", "ym=69.0 # Young's modulus\n", "\n", "#Calculation\n", "k=alfe*delT\n", "E=ym*k*10**9\n", "\n", "#Result\n", "print('\\nThe strain produced in te rod is %.3f * 10^-3'%(k*10**3))\n", "print('\\nThe compressive stress produced in Al rod is %.3f GPa'%(E*10**-9))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The strain produced in te rod is 1.652 * 10^-3\n", "\n", "The compressive stress produced in Al rod is 0.114 GPa\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.9, page no-355" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# limit to compression stress\n", "\n", "import math\n", "#Variable Declaration\n", "alfe=20*10**-6 # Linear coefficient of thermal expansion for alumina\n", "t1=293.0 # temperature \n", "sig=172.0 # compressive stress\n", "E=100.0 # modulus of elasticity\n", "\n", "#Calculation\n", "delT=(sig*10**6)/(E*alfe*10**9)\n", "\n", "#Result\n", "print('\\nTf-Ti=%.0f'%delT)\n", "print('\\n\\nThe maximum temperature at which the rod may be heated without\\nexceeding a compresssive stress of %.0f MPa is %.0f K'%(sig,delT+t1))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Tf-Ti=86\n", "\n", "\n", "The maximum temperature at which the rod may be heated without\n", "exceeding a compresssive stress of 172 MPa is 379 K\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.10, page no-356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Heat energy Requirement\n", "\n", "import math\n", "#Variable Declaration\n", "h_ir=444.0 # specific heat capacity of iron in J.kg^-1.K^-1\n", "h_gr=711.0 # specific heat capacity of graphite in J.kg^-1.K^-1\n", "h_pl=1880.0 # specific heat capacity of polypropylene in J.kg^-1.K^-1\n", "t2=373.0 # Temperature 2\n", "t1=300.0 # Temperature 1\n", "delT=t2-t1 # difference in temperature\n", "W=2.0 # weight\n", "\n", "\n", "#Calculation\n", "\n", "#(a) For Iron\n", "q=W*h_ir*delT\n", "\n", "#(b)for Graphite\n", "q1=W*h_gr*delT\n", "\n", "#(b)for polypropylene\n", "q2=W*h_pl*delT\n", "\n", "\n", "#Result\n", "print('The heat energy required to raise temperature %.0f K from its temperature of \\niron, graphite and polypropylene is %.0f,%.0f,%.0f J respectively'%(delT,q,q1,q2))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat energy required to raise temperature 73 K from its temperature of \n", "iron, graphite and polypropylene is 64824,103806,274480 J respectively\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }