{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 10: Transport Properties of Semiconductors" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1, page no-267" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# intrinsic properties\n", "import math\n", "\n", "#Variable declaration\n", "T=300 # Temperature\n", "mue=0.4 # Electron mobility \n", "muh=0.2 # Hole mobility \n", "e=1.6*10**-19 # electronic charge\n", "eg=0.7*e # Band gap\n", "m=9.1*10**-31 # Mass of electron\n", "me=0.55 # electron effective mass \n", "mh=0.37 # hole effective \n", "h=6.626*10**-34 # Planck's constant\n", "k=1.38*10**-23 # Boltzmann's constant\n", "\n", "#Calculations\n", "ni=2*(2*math.pi*k*T/(h**2))**(1.5)\n", "ni=ni*(m**1.5)*(mh*me)**(3.0/4.0)\n", "ni=ni*math.e**(-eg/(k*T))\n", "sig=ni*e*(mue+muh)\n", "rho=1/sig\n", "\n", "# Result\n", "print(\"\\nThe intrinsic concentration ni=%.3f *10^13 /m^3\"%(ni*10**-13))\n", "print(\"\\nIntrinsic Conductivity,Sigma =%.3f *10^-6 per m^3\\n\\nIntrinsic Resistivity, rho = %.2f*10^6 Ohm-m\"%(sig*10**6,rho*10**-6))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The intrinsic concentration ni=1.352 *10^13 /m^3\n", "\n", "Intrinsic Conductivity,Sigma =1.298 *10^-6 per m^3\n", "\n", "Intrinsic Resistivity, rho = 0.77*10^6 Ohm-m\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2, page no-268" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi energy\n", "\n", "import math\n", "# variable declaration\n", "ni=1.45*10**10 # intrinsic concentration\n", "nd=10**16 # donor concentration\n", "k=1.38*10**-23 # Boltzmann's constant\n", "T=300 # Temperature\n", "e=1.6*10**-19 # electronic charge\n", "\n", "#Calculations\n", "Ef=k*T*math.log(nd/ni)\n", "Ef=Ef/e\n", "\n", "#Result\n", "print(\"The Fermi energy with respect to Ef in intrinsic Si = %.3f eV\"%Ef)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Fermi energy with respect to Ef in intrinsic Si = 0.348 eV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3, page no-269" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# conductivity of intrinsic\n", "\n", "import math\n", "#Variable declarations\n", "ni=2.5*10**19 # intrinsic concentration\n", "mue=0.39 # electron mobility \n", "muh=0.19 # hole mobility \n", "l=10**-2 # length of rod\n", "e=1.6*10**-19 # charge of an electron\n", "\n", "# Calculations\n", "sig=ni*e*(mue+muh)\n", "R=l/(sig*10**-6)\n", "\n", "#Result\n", "print(\"The conductivity of intrinsic Ge is %.2f /ohm-m\\nThe Resistance is %.0f\"%(sig,R))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conductivity of intrinsic Ge is 2.32 /ohm-m\n", "The Resistance is 4310\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4, page no-269" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# conductivity of intrinsic Ge\n", "\n", "import math\n", "#Variable declaration\n", "ni=1.5*10**16 # intrinsic concentration\n", "mue=0.13 # electron mobility \n", "muh=0.05 # hole mobility \n", "e=1.6*10**-19 # electronic charge\n", "\n", "#Calculations\n", "sig=ni*e*(mue+muh)\n", "\n", "#Result\n", "print(\"The conductivity of intrinsic Ge is %.2f *10^-4 /ohm-m\"%(sig*10**4))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conductivity of intrinsic Ge is 4.32 *10^-4 /ohm-m\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.5, page no-270" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# intrinsic conductivity and resistivity\n", "\n", "import math\n", "\n", "#variable declaration\n", "ni=2.15*10**13 # intrinsic concentration\n", "mue=3900 # electron mobility \n", "muh=1900 # hole concentration\n", "e=1.6*10**-19 # electronic charge\n", "\n", "#calculation\n", "sig=ni*e*(mue+muh)\n", "r=1/sig\n", "\n", "# Result\n", "print(\"The conductivity of intrinsic Ge is %.2f *10^-2 /ohm-cm\\nThe intrinsic resistivity is %.0f Ohm-cm\"%(sig*10**2,r))\n", "#answers in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conductivity of intrinsic Ge is 2.00 *10^-2 /ohm-cm\n", "The intrinsic resistivity is 50 Ohm-cm\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.6, page no-270" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# intrinsic conductivity and resistivity\n", "\n", "import math\n", "# variable declaration\n", "ni=2.1*10**19 # intrinsic concentration\n", "mue=0.4 # electron mobility \n", "muh=0.2 # hole mobility\n", "e=1.6*10**-19 # electronic charge\n", "p=4.5*10**23 # boron density \n", "\n", "# Calculation\n", "sig=ni*e*(mue+muh)\n", "r=p*e*muh\n", "\n", "#Result\n", "print(\"The conductivity of intrinsic Ge is %.3f *10^-2 /ohm-cm\\nThe intrinsic resistivity is %.2f *10^4 per ohm-m\"%(sig,r*10**-4))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conductivity of intrinsic Ge is 2.016 *10^-2 /ohm-cm\n", "The intrinsic resistivity is 1.44 *10^4 per ohm-m\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.7, page no-271" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# intrinsic conductivity and resistivity\n", "\n", "import math\n", "# variable declaration\n", "n=5*10**28 # Atomic concentration\n", "ni=1.45*10**13 # intrinsic concentration\n", "mue=1.35 # electron mobility\n", "muh=0.45 # hole mobility\n", "e=1.6*10**-19 # electronic charge\n", "p=4.5*10**23 # boron density\n", "\n", "# calculation\n", "sig=ni*e*(mue+muh)\n", "rho=1/sig\n", "r=rho*10**12\n", "nd=n/10**9\n", "p=(ni**2)/nd\n", "sig2=nd*e*mue\n", "\n", "#Result\n", "print(\"\\nThe intrinsic conductivity is %.2f *10^-6 /ohm-cm\\n\\nThe intrinsic resistivity is %.2f *10^-5 Ohm-m\\n\\nResistance = %.2f*10^7 Ohm\\n\\nDonar concentration is %.0f*10^19\\n\\nConcentration of hole is %.1f*10^6 m^-3\\n\\nConductivity = %.1f per ohm-m\"%(sig*10**6,rho*10**-5,r*10**-17,nd*10**-19,p*10**-6,sig2))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The intrinsic conductivity is 4.18 *10^-6 /ohm-cm\n", "\n", "The intrinsic resistivity is 2.39 *10^-5 Ohm-m\n", "\n", "Resistance = 2.39*10^7 Ohm\n", "\n", "Donar concentration is 5*10^19\n", "\n", "Concentration of hole is 4.2*10^6 m^-3\n", "\n", "Conductivity = 10.8 per ohm-m\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.8, page no-272" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Conductivity, Intrinsic carrier concentration and band gap of Ge\n", "\n", "import math\n", "# Variable declaration\n", "T=300 # Temperature\n", "rho=2.12 # Resistivity\n", "mue=0.36 # Electron mobility\n", "muh=0.17 # Hole mobility\n", "e=1.6*10**-19 # electronic charge\n", "m=9.1*10**-31 # mass of electron\n", "h=6.626*10**-34 # Planck's constant\n", "k=1.38*10**-23 # Boltzmann's constant\n", "\n", "# Calculations\n", "sig=1/rho\n", "ni=sig/(e*(muh+mue))\n", "Nc=2*(2*math.pi*k*T/h**(2))**(1.5)\n", "Nc=Nc*(0.5*m)**(1.5)\n", "Nv=2*(2*math.pi*k*T/h**(2))**(1.5)\n", "Nv=Nv*(0.37*m)**(1.5)\n", "eg=2*k*T*math.log(math.sqrt(Nc*Nv)/ni)\n", "eg=eg/e\n", "\n", "# Result\n", "print(\"\\nConductivity = %.6f per Ohm-m\\nIntrinsic carrier concentration, ni=%.5f*10^18\"%(sig,ni*10**-18))\n", "print(\"\\nNc=%.3f*10^24\\nNv=%.3f*10^24\"%(Nc*10**-24,Nv*10**-24))\n", "print(\"\\nThe band gap of Ge is %.3f eV\"%eg)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Conductivity = 0.471698 per Ohm-m\n", "Intrinsic carrier concentration, ni=5.56248*10^18\n", "\n", "Nc=8.852*10^24\n", "Nv=5.635*10^24\n", "\n", "The band gap of Ge is 0.727 eV\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.9, page no-273" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# carrier concentration \n", "\n", "import math\n", "# Variable declaration\n", "e=1.6*10**-19 # Electronic charge\n", "m=9.1*10**-31 # Mass of electron\n", "h=6.62*10**-34 # Planck's constant\n", "k=1.38*10**-23 # Boltzmann's constant\n", "eg=0.7*e # Band gap energy\n", "T=300 # Temperature\n", "\n", "#Calculations\n", "ni=2*(2*3.14*m*k*T/(h**(2)))**(1.5) # math.pi= 3.14\n", "ni=ni*math.e**(-eg/(2*k*T))\n", "\n", "#Result\n", "print(\"The carrier concentration of an intrinsic semiconductor is = %.2f*10^18 per m^3\"%(ni*10**-18))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The carrier concentration of an intrinsic semiconductor is = 33.49*10^18 per m^3\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.10, page no-273" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Carrier concentration\n", "\n", "import math\n", "# Variable declaration\n", "e=1.6*10**-19 # Electronic charge\n", "m=9.1*10**-31 # mass of electron\n", "h=6.626*10**-34 # planck's constant\n", "k=1.38*10**-23 # Boltzmann's constant\n", "eg=1.1*e # Energy gap\n", "mue=0.48 # Mobility of electron\n", "muh=0.013 # Mobility of hole\n", "T=300 # temperature\n", "\n", "#Calculations\n", "ni=2*(2*math.pi*m*k*T/(h**(2)))**(1.5)\n", "ni=ni*math.e**(-eg/(2*k*T))\n", "sig=ni*e*(mue+muh)\n", "\n", "#Result\n", "print(\"\\nThe carrier concentration of an intrinsic semiconductor is = %.2f*10^16 per m^3\\nThe electrical conductiivity of Si is %.2f*10^-3 per Ohm-m\"%(ni*10**-16,sig*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The carrier concentration of an intrinsic semiconductor is = 1.47*10^16 per m^3\n", "The electrical conductiivity of Si is 1.16*10^-3 per Ohm-m\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.11, page no-275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi energy of Si\n", "\n", "import math\n", "# Variable declaration\n", "e=1.6*10**-19 # ELectronic charge\n", "eg=1.12 # Band gap\n", "me=0.12 # Effective mass of electron\n", "mh=0.28 # Effective mass of hole\n", "T=300 # Temperature \n", "k=1.38*10**-23 # Boltzmann's constant\n", "\n", "# Calculations\n", "ef=(eg/2)+(3*k*T/(4*e))*math.log(mh/me)\n", "\n", "# Result\n", "print(\"The Fermi energy of Si at 300 K is %.3f eV\"%ef)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Fermi energy of Si at 300 K is 0.576 eV\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.12, page no-275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi level shift\n", "\n", "import math\n", "# Variable declaration\n", "e=1.6*10**-19 # Electronic charge\n", "eg=1*e # Energy gap\n", "k=1.38*10**-23 # Boltzmann's constant\n", "m=4.0 # hole to elctron mass ratio\n", "\n", "# calculations\n", "T=0.1*e*4/(3*k*math.log(m))\n", "\n", "# Result\n", "print(\"Temperature at which Fermi level is shifted 10%% is %.f K\"%T)\n", "# Answer in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature at which Fermi level is shifted 10% is 1115 K\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.13, page no-276" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# conductivity of Ge\n", "\n", "import math\n", "# variable declaration\n", "e=1.6*10**-19 # electronic charge\n", "ni=2.4*10**19 # intrinsic concentration\n", "mue=0.39 # Electron mobility \n", "muh=0.19 # hole mobility\n", "\n", "# caclualtions\n", "sig=ni*e*(mue+muh)\n", "\n", "#Result\n", "print(\"The conductivity of Ge at 300 K is %.2f per Ohm-m\"%(math.floor(sig*100)/100))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conductivity of Ge at 300 K is 2.22 per Ohm-m\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.14, page no-277" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Fermi energy level position\n", "\n", "import math\n", "# variable declaration\n", "e=1.6*10**-19 # electronic charge\n", "T1=300 # Lower Temperature \n", "T2=330 # Higher Temperature\n", "eg=0.3 # Fermi level posiion at lower temperature\n", "\n", "# Calculations\n", "eg2=eg*T2/T1\n", "\n", "#Result\n", "print(\"E_c-E_f330=%.2f eV\\n\\nAt 330 K, the Fermi energy level lies %.2f eV, bellow the conduction band.\"%(eg2,eg2))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "E_c-E_f330=0.33 eV\n", "\n", "At 330 K, the Fermi energy level lies 0.33 eV, bellow the conduction band.\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.15, page no-277" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# conductivity of Ge\n", "\n", "import math\n", "# Variable declaration\n", "e=1.6*10**-19 # Charge of electron\n", "eg=0.72*e # Energy gap\n", "t1=293.0 # lower temperature\n", "t2=313.0 # higher temperature\n", "k=1.38*10**-23 # Boltzmann's constant\n", "\n", "# calculations\n", "sig1=2\n", "n=((t2/t1)**(3.0/2.0))*math.e**((eg/(2*k))*((1/t1)-(1/t2)))\n", "sig2=sig1*n\n", "\n", "#Result\n", "print(\"The conductivity of Ge at 40\u00b0C is %.3f per Ohm-m\"%sig2)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conductivity of Ge at 40\u00b0C is 5.487 per Ohm-m\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.16, page no-278" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# intrinsic concentration of Si\n", "\n", "import math\n", "# Variable declaration\n", "e=1.6*10**-19 # electronic charge\n", "m=9.1*10**-31 # mass of electron \n", "mm=0.31*m # effective mass of electron\n", "h=6.626*10**-34 # Planck's constant\n", "k=1.38*10**-23 # Boltzmann's constant \n", "eg=1.1*e # Energy gap\n", "T=300 # Temperature\n", "\n", "# Calculations\n", "ni=2*(2*math.pi*mm*k*T/(h**(2)))**(1.5)\n", "ni=ni*math.e**(-eg/(2*k*T))\n", "\n", "#Result\n", "print(\"The intrinsic concentration of Si at %d K is %.4f * 10^15 electrons per m^3\"%(T,ni*10**-15))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The intrinsic concentration of Si at 300 K is 2.5367 * 10^15 electrons per m^3\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.17, page no-279" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# drift mobility\n", "import math\n", "# Variable declaration\n", "hc=0.55*10**-10 # Hall coefficient of Cu (modulus)\n", "cc=5.9*10**7 # Conductivity of Cu \n", "T=300 # Temperature\n", "\n", "#Calculations\n", "dm=hc*cc\n", "\n", "#Result\n", "print(\"The drift mobility is given by mu_d = %.1f * 10^-3 m^2/V-s\"%(dm*10**3))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drift mobility is given by mu_d = 3.2 * 10^-3 m^2/V-s\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.18, page no-279" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# concentration and averrage o of electron contributed per atom\n", "\n", "import math\n", "#Variable declaration\n", "sig=5.9*10**7 # Resistivity\n", "e=1.6*10**-19 # electronic charge\n", "mu=3.2*10**-3 # electron drift mobility \n", "d=8900 # Density\n", "avg=6.022*10**23 # Avogadro's number\n", "awt=63.5 # Atomic weight\n", "\n", "#calculations\n", "ni=sig/(e*mu) \n", "n=avg*d*1000/awt\n", "k=ni/n\n", "\n", "#Result\n", "print(\"Concentration of free electron in pure Cu is %.2f*10^28\\nThe average number of electrons contributed per Cu atom is %.2f i.e. %.0f\"%(n*10**-28,math.floor(k*100)/100,k))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Concentration of free electron in pure Cu is 8.44*10^28\n", "The average number of electrons contributed per Cu atom is 1.36 i.e. 1\n" ] } ], "prompt_number": 33 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.19, page no-280" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# mobility of the Ge\n", "\n", "import math\n", "# Variable declaration\n", "i=5*10**-3 # current through the specimen\n", "v=1.35 # voltage across the specimen \n", "l=0.01 # length of the sample\n", "b=5*10**-3 # Breadth of the sample \n", "t=10**-3 # Thickness of the sample\n", "a=5*10**-6 # Area of the sample\n", "vy=20*10**-3 # Hall voltage\n", "H=0.45 # Magnetic field\n", "\n", "# Calculations\n", "rho=v*a/(l*i)\n", "Ey=vy/t\n", "j=i/a\n", "k=Ey/(H*j)\n", "Rh=3*math.pi*k/8\n", "mu=Rh/rho\n", "\n", "#Result\n", "print(\"The mobility of the Ge sample is %.2f m^2/V-s\"%mu)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mobility of the Ge sample is 0.39 m^2/V-s\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.20, page no-282" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Hall potential difference\n", "\n", "import math\n", "#Variable declaration\n", "I=200 # current flowing\n", "H=1.5 # Applied magnetic field\n", "n=8.4*10**28 # no of electrons per unit volume\n", "d=1.0*10**-3 # thickness of the strip\n", "e=1.6*10**-19 # electronic charge\n", "\n", "# calculations\n", "v=I*H/(n*d*e)\n", "\n", "# Result\n", "print(\"The Hall potential difference appearance between the ship is %.0f \u00b5v\"%(v*10**6))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Hall potential difference appearance between the ship is 22 \u00b5v\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.21, page no-283" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#carrier concentration and mobility of Si\n", "\n", "import math\n", "#Variable declaration\n", "rh=3.66*10**-4 # Hall coefficient of specimen\n", "rho=8.93*10**-3 # resistivity of thespecimen\n", "e=1.6*10**-19 # electronic charge\n", "\n", "#calculations\n", "ni=1/(rh*e)\n", "muh=rh/rho\n", "\n", "#Result\n", "print(\"the carrier concentration of Si doped specimen is %.3f *10^22 m^-3\"%(ni*10**-22))\n", "print(\"\\n The mobility of Si doped specimen is %.5f m^2/V-s\"%muh)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the carrier concentration of Si doped specimen is 1.708 *10^22 m^-3\n", "\n", " The mobility of Si doped specimen is 0.04099 m^2/V-s\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.22, page no-283" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# #carrier concentration and electron mobility\n", "\n", "import math\n", "#Variable declaration\n", "Rh=3.66*10**-11 # Hall coefficient\n", "sig=112*10**7 # Conductivity\n", "e=1.6*10**-19 # electronic charge\n", "\n", "# Calculations\n", "n=3*math.pi/(8*Rh*e)\n", "mu=sig/(n*e)\n", "\n", "# Result\n", "print(\"\\nThe concentration of electrons is %.0f*10^29 m^-3\\nthe electron mobility at room temperature = %.3f m^2/V-s\"%(n*10**-29,mu))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The concentration of electrons is 2*10^29 m^-3\n", "the electron mobility at room temperature = 0.035 m^2/V-s\n" ] } ], "prompt_number": 37 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.23, page no-284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Hall voltage\n", "\n", "import math\n", "# Variable declaration\n", "I=50 # Current\n", "B=1.5 # Magnetic field \n", "t=0.5*10**-2 # Thickness of the slab\n", "e=1.6*10**-19 # Electronic charge\n", "d=2*10**-2 # Width of the slab \n", "N=8.4*10**28 # Concentration of electron\n", "\n", "# Calculations\n", "v=B*I/(N*e*d)\n", "\n", "# Result\n", "print(\"The Hall voltage is %.2f *10^-7 V\"%(v*10**7))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Hall voltage is 2.79 *10^-7 V\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.24, page no-284" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# relaxation time of electrons in metal\n", "import math\n", "# Variable declaration\n", "rho=1.54*10**-8 # resistivity of metal\n", "ni=5.8*10**28 # carrier concentration\n", "m=9.1*10**-31 # mass of an electron\n", "e=1.6*10**-19 # electronic charge\n", "\n", "# Calculations\n", "tau=m/(rho*ni*(e**2))\n", "\n", "#Result\n", "print(\"The relaxation time of electrons in metal is %.2f*10^-14 s\"%(tau*10**14))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The relaxation time of electrons in metal is 3.98*10^-14 s\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.25, page no-285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# mobility of electrons\n", "\n", "import math\n", "# variable declaration\n", "sig=6.22*10**7 # conductivity of metal\n", "n=5.9*10**28 # carrier concentration of electron\n", "e=1.6*10**-19 # electronic charge\n", "\n", "#calculation\n", "mu=sig/(n*e)\n", "\n", "# Result\n", "print(\"The mobility of electrons in Si is %.2f*10^-3 m^2/V-s\"%(mu*10**3))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mobility of electrons in Si is 6.59*10^-3 m^2/V-s\n" ] } ], "prompt_number": 41 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.26, page no-285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# mobility of the electrons\n", "\n", "import math\n", "# Variable declaration\n", "rho=0.1 # resistivity of metal\n", "ni=10**20 # carrier concentration of electron \n", "vd=1 # drift velocity \n", "e=1.6*10**-19 # electronic charge\n", "\n", "# calculations\n", "mu=1/(rho*ni*e)\n", "E=vd/mu\n", "\n", "# Result\n", "print(\"\\nThe mobility of the electrons in material is %.3f m^2/V-s\\nThe electric field is %.1f V/m\"%(mu,E))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The mobility of the electrons in material is 0.625 m^2/V-s\n", "The electric field is 1.6 V/m\n" ] } ], "prompt_number": 42 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.27, page no-286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# mobility of electrons\n", "\n", "import math\n", "#variable declaration\n", "sig=6.22*10**7 # conductivity of metal\n", "n=5.9*10**28 #carrier concentration of electron \n", "e=1.6*10**-19 # electronic charge\n", "\n", "# calculations\n", "mu=sig/(n*e)\n", "\n", "# Result\n", "print(\"The mobility of electrons in silver is %.2f*10^-3 m^2/V-s\"%(mu*10**3))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mobility of electrons in silver is 6.59*10^-3 m^2/V-s\n" ] } ], "prompt_number": 43 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.28, page no-286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# mobility of the electrons\n", "\n", "import math\n", "# Variable declaration\n", "rho=0.1 # resistivity of metal\n", "ni=10**20 # carrier concentration of electron \n", "vd=1 # drift velocity \n", "e=1.6*10**-19 # electronic charge\n", "\n", "# calculations\n", "mu=1/(rho*ni*e)\n", "E=vd/mu\n", "\n", "# Result\n", "print(\"\\nThe mobility of the electrons in material is %.3f m^2/V-s\\nThe electric field is %.1f V/m\"%(mu,E))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The mobility of the electrons in material is 0.625 m^2/V-s\n", "The electric field is 1.6 V/m\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.29, page no-287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# relaxation time, mobility and conductivity\n", "\n", "import math\n", "#variable declaration\n", "avg=6.023*10**23 # Avogadro's number\n", "m=9.1*10**-31 # mass of electron\n", "e=1.6*10**-19 # charge of an electron \n", "d=8.92*10**3 # density of copper \n", "rho=1.73*10**-8 # resistivity of copper\n", "z=63.5 # Atomic weight of copper\n", "\n", "# Calculations\n", "n=avg*d/z\n", "sig=1/rho\n", "tau=sig*m/(n*(e**2))\n", "mu=sig/(e*n)\n", "\n", "#Result\n", "print(\"\\nThe relaxation time is %.2f *10^-11 s\\nThe mobility of electrons in copper is %.2f m^2/V-s\"%(tau*10**11,mu))\n", "print(\"The conductivity of coppper is %.2f * 10^7 per Ohm-m\\n\"%(sig*10**-7))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The relaxation time is 2.43 *10^-11 s\n", "The mobility of electrons in copper is 4.27 m^2/V-s\n", "The conductivity of coppper is 5.78 * 10^7 per Ohm-m\n", "\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.30, page no-288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# mobility of electrons and drift velocity\n", "\n", "import math\n", "#variable declaration\n", "rho=1.54*10**-8 # resistivity of silver\n", "E=100 # electric field along the wire\n", "ni=5.8*10**28 # carrier concentration of electron\n", "e=1.6*10**-19 # electronic charge\n", "\n", "# calculations\n", "mu=1/(rho*ni*e)\n", "vd=mu*E\n", "\n", "#Result\n", "print(\"The mobility of electrons in silver is %.4f*10^-3 m^2/V-s\\nThe drift velocity id %.5f m/s\"%(mu*10**3,vd))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mobility of electrons in silver is 6.9973*10^-3 m^2/V-s\n", "The drift velocity id 0.69973 m/s\n" ] } ], "prompt_number": 46 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.31, page no-288" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# relaxation time for electrons\n", "\n", "import math\n", "#variable declaration\n", "rho=1.43*10**-8 # resistivity of metal\n", "ni=6.5*10**28 # carrier concentration of electron\n", "e=1.6*10**-19 # electronic charge\n", "m=9.1*10**-31 # mass of an electron\n", "\n", "# calculations\n", "tau=m/(rho*ni*e**2)\n", "\n", "# Result\n", "print(\"The relaxation time for electrons in the metal is %.2f *10^-14 s\"%(math.ceil(tau*10**16)/100))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The relaxation time for electrons in the metal is 3.83 *10^-14 s\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.32, page no-289" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# concentration, mobility and velocity of electron\n", "\n", "import math\n", "#variable declaration\n", "R=60 # resistance of aluminium\n", "rho=2.7*10**-8 # resistivity of aluminium\n", "i=15 # current in the wire\n", "l=5 # length of the aluminium wire\n", "m=3 # number of free electron per atom \n", "e=1.6*10**-19 # electronic charge \n", "d=2.7*10**3 # density of aluminium\n", "awt=26.98 # Atomic weight of aluminium\n", "avg=6.023*10**23 # Avogadro's number\n", "\n", "# calculations\n", "n=m*avg*1000*d/awt\n", "mu=1/(rho*n*e)\n", "vd=mu*i*R*10**-3/l\n", "\n", "# Result\n", "print(\"Free electron concentration is %.3f * 10^29\"%(n*10**-29))\n", "print(\"\\nThe mobility of electron in aluminium is %.4f*10^-3 m^2/v-s\"%(mu*10**3))\n", "print(\"\\nThe drift velocity of the electron in Al is %.1f*10^-4 m/s\"%(vd*10**4))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Free electron concentration is 1.808 * 10^29\n", "\n", "The mobility of electron in aluminium is 1.2801*10^-3 m^2/v-s\n", "\n", "The drift velocity of the electron in Al is 2.3*10^-4 m/s\n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.33, page no-290" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Thermal and drift velocity of electron in copper\n", "\n", "import math\n", "# variable declaration\n", "R=0.02 # resistance of the Cu\n", "i=15 # current in the wire\n", "mu=4.3*10**-3 # mobility of the free electron \n", "l=2 # length of the Cu wire\n", "k=1.38*10**-23 # Boltzmann's constant \n", "m=9.1*10**-31 # mass of electron\n", "T=300 # temperature \n", "\n", "# Calculations\n", "v=i*R \n", "E=v/l\n", "vd=E*mu\n", "vth=math.sqrt(3*k*T/m)\n", "\n", "# Result\n", "print(\"\\nThe thermal velocity of the free electrons in copper is %.3f mm/s\"%(vth*10**-5))\n", "print(\"The drift velocity of electrons in copper is %.3f mm/s\"%(vd*10**3))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "The thermal velocity of the free electrons in copper is 1.168 mm/s\n", "The drift velocity of electrons in copper is 0.645 mm/s\n" ] } ], "prompt_number": 52 } ], "metadata": {} } ] }