{

 "metadata": {

  "name": "",

  "signature": "sha256:64d9a62e17838716bd10cd86f93be8c39dc69462337a3d3adc3d6ea158cbc575"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter 3: Mass-Transfer Coefficients"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.1:Page 53"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 3.1\n",

      "# Page: 53\n",

      "\n",

      "print'Illustration 3.1 - Page: 53\\n\\n'\n",

      "\n",

      "# solution\n",

      "\n",

      "#****Data*****#\n",

      "# a = CO2 b = H2O\n",

      "Ca0 = 0;#[kmol/cubic m]\n",

      "Cai = 0.0336;#[kmol/cubic m]\n",

      "Dab = 1.96*10**(-9);# [square m/s]\n",

      "#*******#\n",

      "\n",

      "density = 998.0;# [kg/cubic m]\n",

      "viscosity = 8.94*10**(-4);#[kg/m.s]\n",

      "rate = 0.05;#[kg/m.s] mass flow rate of liquid\n",

      "L = 1;#[m]\n",

      "g = 9.81;#[m/square s]\n",

      "# From Eqn. 3.10\n",

      "Del = ((3*viscosity*rate)/((density**2)*g))**(1.0/3);# [m]\n",

      "Re = 4*rate/viscosity;\n",

      "# Flow comes out to be laminar\n",

      "# From Eqn. 3.19\n",

      "Kl_avg = ((6*Dab*rate)/(3.141*density*Del*L))**(1.0/2);#[kmol/square m.s.(kmol/cubic m)]\n",

      "bulk_avg_velocity = rate/(density*Del);#[m/s]\n",

      "# At the top: Cai-Ca = Cai_Ca0 = Cai\n",

      "#At the bottom: Cai-Cal\n",

      "# From Eqn. 3.21 & 3.22\n",

      "Cal = Cai*(1-(1.0/(exp(Kl_avg/(bulk_avg_velocity*Del)))));# [kmol/cubic m]\n",

      "rate_absorption = bulk_avg_velocity*Del*(Cal-Ca0);# [kmol/s].(m of width)\n",

      "print'The rate of absorption is ',round(rate_absorption,8),' kmol/sec.(m of width)'\n",

      "# The actual value may be substantially larger."

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 3.1 - Page: 53\n",

        "\n",

        "\n",

        "The rate of absorption is  7.2e-07  kmol/sec.(m of width)\n"

       ]

      }

     ],

     "prompt_number": 8

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.2: Page 56"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 3.2\n",

      "# Page: 56\n",

      "\n",

      "print'Illustration 3.2 - Page: 56\\n\\n'\n",

      "\n",

      "# solution\n",

      "\n",

      "#***Data****#\n",

      "d = 0.025;# [m]\n",

      "avg_velocity = 3;# [m/s]\n",

      "viscosity = 8.937*10**(-4);# [kg/m.s]\n",

      "density = 997;# [kg/m**3]\n",

      "#*********#\n",

      "\n",

      "kinematic_viscosity = viscosity/density;# [square m/s]\n",

      "Re = d*avg_velocity*density/viscosity;\n",

      "# Reynold's number comes out to be 83670\n",

      "# At this Reynold's number fanning factor = 0.0047\n",

      "f = 0.0047;\n",

      "L = 1;# [m]\n",

      "press_drop = 2*density*f*L*(avg_velocity**2)/(d);# [N/square m]\n",

      "P = 3.141*(d**2)*avg_velocity*press_drop/4;# [N.m/s] for 1m pipe\n",

      "m = 3.141*(d**2)*L*density/4;\n",

      "# From Eqn. 3.24\n",

      "Ld = ((kinematic_viscosity**3)*m/P)**(1.0/4);# [m]\n",

      "# From Eqn. 3.25\n",

      "Ud = (kinematic_viscosity*P/m)**(1.0/4);# [m/s]\n",

      "print'Velocity of small eddies is',round(Ud,4),'m/s'\n",

      "print'Length scale of small eddies is',round(Ld,7),'m'"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 3.2 - Page: 56\n",

        "\n",

        "\n",

        "Velocity of small eddies is 0.0549 m/s\n",

        "Length scale of small eddies is 1.63e-05 m\n"

       ]

      }

     ],

     "prompt_number": 17

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.3: Page 69"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 3.3\n",

      "# Page: 69\n",

      "\n",

      "print'Illustration 3.3 - Page: 69\\n\\n'\n",

      "\n",

      "# solution\n",

      "\n",

      "# Heat transfer analog to Eqn. 3.12\n",

      "# The Eqn. remains the same with the dimensionless conc. ratio replaced by ((tl-to)/(ti-to))\n",

      "\n",

      "# The dimensionless group:\n",

      "# eta = 2*Dab*L/(3*del**2*velocity);\n",

      "# eta = (2/3)*(Dab/(del*velocity))*(L/del);\n",

      "# Ped = Peclet no. for mass transfer\n",

      "# eta = (2/3)*(1/Ped)*(L/del);\n",

      "\n",

      "# For heat transfer is replaced by\n",

      "# Peh = Peclet no. for heat transfer\n",

      "# eta = (2/3)*(1/Peh)*(L/del);\n",

      "# eta = (2/3)*(alpha/(del*velocity))*(L/del);\n",

      "# eta = (2*alpha*L)/(3*del**2*velocity);\n",

      "print'Heat transfer analog to Eqn. 3.21 is eta = (2*alpha*L)/(3*del**2*velocity)'"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 3.3 - Page: 69\n",

        "\n",

        "\n",

        "Heat transfer analog to Eqn. 3.21 is eta = (2*alpha*L)/(3*del**2*velocity)\n"

       ]

      }

     ],

     "prompt_number": 1

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.4: Page-69"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 3.4\n",

      "# Page: 69\n",

      "\n",

      "import math\n",

      "print'Illustration 3.4 - Page: 69\\n\\n'\n",

      "\n",

      "# solution\n",

      "\n",

      "#***Data****#\n",

      "# a = UF6 b = air\n",

      "# The average heat transfer coefficient: Nu_avg = 0.43+0.532(Re^0.5)(Pr^0.31)\n",

      "# The analogus expression for mass transfer coefficient: Sh_avg = 0.43+0.532(Re^0.5)(Sc^0.31)\n",

      "d = 0.006;# [m]\n",

      "velocity = 3.0;# [m/s]\n",

      "surf_temp = 43.0;# [C]\n",

      "bulk_temp = 60.0;# [C]\n",

      "avg_temp = (surf_temp+bulk_temp)/2; #[C]\n",

      "density = 4.10;# [kg/cubic m]\n",

      "viscosity = 2.7*10**(-5);# [kg/m.s]\n",

      "Dab = 9.04*10**(-6);# [square m/s]\n",

      "press = 53.32;# [kN/square m]\n",

      "tot_press = 101.33;# [kN/square m]\n",

      "#******#\n",

      "\n",

      "avg_press = press/2.0; # [kN/square m]\n",

      "Xa = avg_press/tot_press;\n",

      "Xb = 1-Xa;\n",

      "Re = d*velocity*density/viscosity;\n",

      "Sc = viscosity/(density*Dab);\n",

      "Sh_avg = 0.43+(0.532*(2733**0.5)*(0.728**0.5));\n",

      "c = 273.2/(22.41*(273.2+avg_temp));# [kmol/cubic m]\n",

      "F_avg = Sh_avg*c*Dab/d;#[kmol/cubic m]\n",

      "Nb = 0.0;\n",

      "Ca1_by_C = press/tot_press;\n",

      "Ca2_by_C = 0.0;\n",

      "Flux_a = 1.0;\n",

      "# Using Eqn. 3.1\n",

      "Na = Flux_a*F_avg*math.log((Flux_a-Ca2_by_C)/(Flux_a-Ca1_by_C));#[kmol UF6/square m.s]\n",

      "print'Rate of sublimation is',round(Na,8),' kmol UF6/square m.s'\n",

      "# the answer is slightly different in textbook due to approximation"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 3.4 - Page: 69\n",

        "\n",

        "\n",

        "Rate of sublimation is 0.00102088  kmol UF6/square m.s\n"

       ]

      }

     ],

     "prompt_number": 21

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.5: Page 73"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 3.5\n",

      "# Page: 73\n",

      "\n",

      "print'Illustration 3.5 - Page: 73\\n\\n'\n",

      "\n",

      "# solution\n",

      "\n",

      "#****Data****#\n",

      "velocity = 15.0;# [m/s]\n",

      "G = 21.3;# [kg/square m.s]\n",

      "#******#\n",

      "\n",

      "# Since the experimental data do not include the effects of changing Prandtl number.\n",

      "\n",

      "# Jh = (h/(Cp*density*viscosity)) = (h/Cp*G)*(Pr^(2/3)) = Shi(Re);\n",

      "\n",

      "# Shi(Re) must be compatible with 21.3*(G**0.6);\n",

      "# Let Shi(Re) = b*(Re**n);\n",

      "# Re = (l*G)/viscosity;\n",

      "\n",

      "# h = (Cp*G/(Pr**(2/3)))*b*(Re**n);\n",

      "# h = (Cp*G/(Pr**(2/3)))*b*((l*b/viscosity)**n) = 21.3*(G**0.6);\n",

      "\n",

      "n = 0.6-1;\n",

      "# b = 21.3*((Pr**(2/3))/Cp)*((l/viscosity)**(-n));\n",

      "\n",

      "# Using data for air at 38 C & 1 std atm.\n",

      "Cp1 = 1002;# [kJ/kg.K]\n",

      "viscosity1 = 1.85*10**(-5);#[kg/m.s]\n",

      "k1 = 0.0273;#[W/m.K]\n",

      "Pr1 = (Cp1*viscosity1)/k1;\n",

      "b_prime = 21.3*(Pr1**(2.0/3)/Cp1)*((1/viscosity1)**0.4);\n",

      "# b = b_prime*l**(0.4);\n",

      "# Jh = (h/(Cp*G))*Pr**(2/3) = b_prime*((l/Re)**(0.4)) = Shi(Re);\n",

      "\n",

      "# The heat mass transfer analogy will be used to estimate the mass transfer coefficient. (Jd = Jh)\n",

      "\n",

      "# Jd = (KG*Pbm*Mav*Sc**(2/3))/(density*viscosity) = Shi(Re) = b_prime*((l/Re)**0.4);\n",

      "\n",

      "# KG*Pbm = F = (b_prime*density*viscosity)/(Re^0.4*Mav*Sc**(2/3)) = (b_prime*(density*velocity)**0.6*(viscosity^0.4))/(Mav*Sc**(2/3));\n",

      "\n",

      "# For H2-H20, 38 C, 1std atm\n",

      "viscosity2 = 9*10**(-6);# [kg/m.s]\n",

      "density2 = 0.0794;# [kg/cubic m]\n",

      "Dab = 7.75*10**(-5);# [square m/s]\n",

      "Sc = viscosity2/(density2*Dab);\n",

      "\n",

      "# Assuming desity, Molecular weight and viscosity of the gas are essentially those of H2\n",

      "\n",

      "Mav = 2.02;# [kg/kmol]\n",

      "F = (b_prime*(density2*velocity)**0.6*(viscosity2**0.4))/(Mav*Sc**(2.0/3));# [kmol/square m.s]\n",

      "print'The required mass transfer: ',round(F,5),' kmol/square m.s'"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 3.5 - Page: 73\n",

        "\n",

        "\n",

        "The required mass transfer:  0.00525  kmol/square m.s\n"

       ]

      }

     ],

     "prompt_number": 27

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.6:Page 77"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 3.6\n",

      "# Page: 77\n",

      "\n",

      "print'Illustration 3.6 - Page: 77\\n\\n'\n",

      "\n",

      "# solution\n",

      "from scipy import integrate\n",

      "import math \n",

      "#***Data***#\n",

      "Dp = 0.0125;# [m]\n",

      "viscosity = 2.4*10**(-5);# [kg/m.s]\n",

      "Sc = 2.0;\n",

      "E = 0.3;\n",

      "Go = (2*10**(-3))/0.1;# molar superficial mass velocity [kmol/square m.s]\n",

      "#********#\n",

      "\n",

      "# a = CO b = Ni(CO)4\n",

      "# Nb = -(Na/4);\n",

      "Flux_a = 4.0/3;\n",

      "Ca2_by_C = 0;# At the metal interface\n",

      "# Ca1_by_C = Ya #mole fraction of CO in the bulk\n",

      "\n",

      "# Eqn. 3.1 becomes: Na = (4/3)*F*log((4/3)/((4/3)-Ya));\n",

      "\n",

      "# Let G = kmol gas/(square m bed cross section).s\n",

      "# a = specific metal surface\n",

      "# z = depth \n",

      "# Therefore, Na = -(diff(Ya*G))/(a*diff(z));# [kmol/((square m metal surface).s)];\n",

      "# For each kmol of CO consumed, (1/4)kmol Ni(CO)4 forms, representing a loss of (3/4) kmol per kmol of CO consumed.\n",

      "# The CO consumed through bed depth dz is therefore (Go-G)(4/3) kmol;\n",

      "# Ya = (Go-(Go-G)*(4/3))/G;\n",

      "# G = Go/(4-(3*Ya));\n",

      "# diff(YaG) = ((4*Go)/(4-3*Ya)**2)*diff(Ya);\n",

      "\n",

      "# Substituting in Eqn. 3.64\n",

      "# -(4*Go/((4-3*Ya)**2*a))*(diff(Ya)/diff(z)) = (4/3)*F*log(4/(4-3*Ya));\n",

      "\n",

      "# At depth z:\n",

      "# Mass velocity of CO = (Go-(Go-G)/(4/3))*28;\n",

      "# Mass velocity of Ni(CO)4 = ((Go-G)*(1/3))*170.7;\n",

      "# G_prime = 47.6*Go-19.6G; # total mass velocity [kg/square m.s]\n",

      "# Substituting G leads to:\n",

      "# G_prime = Go*(47.6-19.6*(4-3*Ya));# [kg/m.s]\n",

      "# Re = (Dp*G')/viscosity\n",

      "\n",

      "# With Go = 0.002 kmol/square m.s & Ya in the range 1-0.005, the range of Re is 292-444;\n",

      "# From table 3.3:\n",

      "# Jd = (F/G)*(Sc**(2/3)) = (2.06/E)*Re**(-0.575);\n",

      "# F = (2.06/E*(Sc)**(2/3))*(Go/(4-3*Ya))*Re**(-0.575);\n",

      "\n",

      "a = 6*(1-E)/Dp;\n",

      "\n",

      "# Result after arrangement:\n",

      "\n",

      "X2=lambda Ya:-((4*Go)/((4-(3*Ya))**2.0*a))*(3.0/4)*(E*(Sc**(2.0/3))*(4-(3*Ya))/(2.06*Go)*(1/math.log(4.0/(4-(3*Ya)))))*(((Dp/viscosity)*(Go*(47.6-(19.6/(4.0-(3*Ya))))))**0.575);# [m]\n",

      "Z = integrate.quad(X2,1,0.005);\n",

      "print'The bed depth required to reduce the CO content to 0.005 is',round(Z[0],3),'m'\n",

      "#the answers are slightly different in textbook due to approximation while here answers are precise"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 3.6 - Page: 77\n",

        "\n",

        "\n",

        "The bed depth required to reduce the CO content to 0.005 is 0.132 m\n"

       ]

      }

     ],

     "prompt_number": 7

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.7: Page 80"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 3.7\n",

      "# Page: 80\n",

      "\n",

      "print'Illustration 3.7 - Page: 80\\n\\n'\n",

      "\n",

      "# solution\n",

      "\n",

      "#****Data*****#\n",

      "# a = water b = air\n",

      "out_dia = 0.0254;# [m]\n",

      "wall_thick = 0.00165;# [m]\n",

      "avg_velocity = 4.6;# [m/s]\n",

      "T1 = 66.0;# [C]\n",

      "P = 1.0;# [atm]\n",

      "Pa1 = 0.24;# [atm]\n",

      "k1 = 11400.0;# [W/(square m.K)]\n",

      "T2 = 24.0;# [C]\n",

      "k2 = 570.0;# [W/square m.K]\n",

      "k_Cu = 381.0;# [w/square m.K]\n",

      "#******#\n",

      "\n",

      "# For the metal tube\n",

      "int_dia = out_dia-(2*wall_thick);# [m]\n",

      "avg_dia = (out_dia+int_dia)/2;# [mm]\n",

      "Nb = 0;\n",

      "Flux_a = 1;\n",

      "Ya1 = 0.24;\n",

      "Yb1 = 1-Ya1;\n",

      "Mav = (Ya1*18.02)+(Yb1*29);# [kg/kmol]\n",

      "density = (Mav/22.41)*(273/(273+T1));# [kg/cubic m]\n",

      "viscosity = 1.75*10**(-5);# [kg/m.s]\n",

      "Cpa = 1880.0;# [J/kg.K]\n",

      "Cpmix = 1145.0;# [J/kg.K]\n",

      "Sc = 0.6;\n",

      "Pr = 0.75;\n",

      "G_prime = avg_velocity*density;# [kg/square m.s]\n",

      "G = G_prime/Mav;# [kmol/square m.s]\n",

      "Re = avg_dia*G_prime/viscosity;\n",

      "# From Table 3.3:\n",

      "# Jd = Std*Sc**(2/3) = (F/G)*Sc**(2/3) = 0.023*Re**(-0.17);\n",

      "Jd = 0.023*Re**(-0.17);\n",

      "F = (0.023*G)*(Re**(-0.17)/Sc**(2.0/3));\n",

      "\n",

      "# The heat transfer coeffecient in the absence of mass transfer will be estimated through Jd = Jh\n",

      "# Jh = Sth*Pr^(2/3) = (h/Cp*G_prime)*(Pr^(2/3)) = Jd\n",

      "h = Jd*Cpmix*G_prime/(Pr**(2.0/3));\n",

      "\n",

      "U = 1/((1/k1)+((wall_thick/k_Cu)*(int_dia/avg_dia))+((1/k2)*(int_dia/out_dia)));# W/square m.K\n",

      "\n",

      "# Using Eqn. 3.70 & 3.71 with Nb = 0\n",

      "# Qt = (Na*18.02*Cpa/1-exp(-(Na*18.02*Cpa/h)))*(T1-Ti)+(Lambda_a*Na);\n",

      "# Qt = 618*(Ti-T2);\n",

      "# Using Eqn. 3.67, with Nb = 0, Cai/C = pai, Ca1/C = Ya1 = 0.24;\n",

      "# Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1));\n",

      "\n",

      "# Solving above three Eqn. simultaneously:\n",

      "Ti = 42.2;# [C]\n",

      "pai = 0.0806;# [atm]\n",

      "Lambda_a = 43.4*10**6;# [J/kmol]\n",

      "Na = F*log(((Flux_a)-(pai))/((Flux_a)-(Ya1)));# [kmol/square m.s]\n",

      "Qt1 = 618*(Ti-T2);# [W/square m]\n",

      "Qt2 = ((Na*18.02*Cpa/(1-exp(-(Na*18.02*Cpa/h))))*(T1-Ti))+(Lambda_a*Na);# [W/square m]\n",

      "\n",

      "# since the value of Qt1 & Qt2 are relatively close\n",

      "print'The local rate of condensation of water is ',round(Na,6),' kmol/square m.s'"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 3.7 - Page: 80\n",

        "\n",

        "\n",

        "The local rate of condensation of water is  0.000232  kmol/square m.s\n"

       ]

      }

     ],

     "prompt_number": 36

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex3.8: Page 81"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "\n",

      "# Illustration 3.8\n",

      "# Page: 81\n",

      "\n",

      "import math\n",

      "print'Illustration 3.8 - Page: 81\\n\\n'\n",

      "print'Illustration 3.8 (a)\\n\\n'\n",

      "\n",

      "# Solution (a)\n",

      "\n",

      "#***Data****#\n",

      "# a = water b = air\n",

      "Nb = 0;\n",

      "h = 1100.0;# [W/square m]\n",

      "#*****#\n",

      "\n",

      "Ma = 18.02;# [kg/kmol]\n",

      "Cpa = 2090;# [J/kg.K]\n",

      "T1 = 600.0;# [C]\n",

      "Ti = 260;# [C]\n",

      "# The positive dirn. is taken to be from the bulk gas to the surface.\n",

      "Has = 2.684*(10**6);# enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",

      "Hai = 2.994*(10**6);# enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",

      "\n",

      "# Radiation contributions to the heat transfer from  the gas to the surface are negligible. Eqn. 3.70 reduces to\n",

      "Na = -((h/(Ma*Cpa))*log(1-((Cpa*(T1-Ti))/(Has-Hai))));# [kmol/square m.s]\n",

      "print'The rate of steam flow reqd. is',round(Na,4),' kmol/square m.s\\n\\n'\n",

      "# negative sign indicates that the mass flux is into the gas\n",

      "\n",

      "print'Illustration 3.8 (b)\\n\\n'\n",

      " \n",

      "# Solution (b)\n",

      "\n",

      "#***Data****#\n",

      "# a  =  water b  =  air\n",

      "h  =  572.0;# [W/square m]\n",

      "T1  =  25.0;# [C]\n",

      "#******#\n",

      "\n",

      "Ti  =  260.0;# [C]\n",

      "# The positive dirn. is taken to be from the bulk gas to the surface.\n",

      "Has  =  1.047*10**(5);# enthapy of saturated steam at 1.2 std atm, rel. to the liquid at 0 C in [J/kg]\n",

      "Hai  =  2.994*(10**6);# enthalpy of steam at 1 std atm, 260 C in [J/kg]\n",

      "\n",

      "# Radiation contributions to the heat transfer from  the gas to the surface are negligible. Eqn. 3.70 reduces to\n",

      "Na  =  -((h/(Ma*Cpa))*math.log(1-((Cpa*(T1-Ti))/(Has-Hai))));# [kmol/square m.s]\n",

      "print'The rate of steam flow reqd. is',round(Na,4),' kmol/square m.s'\n",

      "# negative sign indicates that the mass flux is into \n",

      "# the answer of part B in textbook is incorrect"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "Illustration 3.8 - Page: 81\n",

        "\n",

        "\n",

        "Illustration 3.8 (a)\n",

        "\n",

        "\n",

        "The rate of steam flow reqd. is -0.0348  kmol/square m.s\n",

        "\n",

        "\n",

        "Illustration 3.8 (b)\n",

        "\n",

        "\n",

        "The rate of steam flow reqd. is 0.0028  kmol/square m.s\n"

       ]

      }

     ],

     "prompt_number": 42

    }

   ],

   "metadata": {}

  }

 ]

}