{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter-9 : The 555 IC Timer" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 9.1 - Page No 295" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "C=.01 # in micro F\n", "C=C*10**-6 # in F\n", "R_A= 2 # in kohm\n", "R_A=R_A*10**3 # in ohm\n", "R_B= 100 # in kohm\n", "R_B=R_B*10**3 # in ohm\n", "T_High= 0.693*(R_A+R_B)*C # in seconds\n", "T_Low= 0.693*R_B*C # in seconds\n", "T=T_High+T_Low # in seconds\n", "f=1/T # in Hz\n", "print \"Frequency of oscillations = %0.1f Hz\" %f\n", "DutyCycle= T_High/T*100 # in percent\n", "print \"Duty cycle = %0.1f %%\" %DutyCycle " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of oscillations = 714.4 Hz\n", "Duty cycle = 50.5 %\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 9.2 - Page No 295\n", " " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "C=1 # in micro F\n", "C=C*10**-6 # in F\n", "C1=0.01 # in micro F\n", "C1=C1*10**-6 # in F\n", "R_A=4.7 # in kohm\n", "R_B=1 # in kohm\n", "R_A=R_A*10**3 # in ohm\n", "R_B=R_B*10**3 # in ohm\n", "T_on= 0.693*(R_A+R_B)*C # in seconds\n", "T_on=T_on*10**3 # in ms\n", "print \"Positive pulse width = %0.2f mili seconds\" %T_on\n", "T_off= 0.693*R_B*C # in seconds\n", "T_off=T_off*10**3 # in ms\n", "print \"Negative pulse width = %0.3f mili seconds\" %T_off\n", "f=1.4/((R_A+2*R_B)*C) # in Hz\n", "print \"Free running Frequency = %0.f Hz\" %f\n", "DutyCycle= (R_A+R_B)/(R_A+2*R_B)*100# in percent\n", "print \"Duty cycle = %0.f %%\" %DutyCycle" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Positive pulse width = 3.95 mili seconds\n", "Negative pulse width = 0.693 mili seconds\n", "Free running Frequency = 209 Hz\n", "Duty cycle = 85 %\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 9.3 - Page No 296\n", " " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "C=0.01 # in micro F\n", "C=C*10**-6 # in F\n", "f=1 # in kHz\n", "f=f*10**3 # in Hz\n", "# R_A= R_B\n", "# T_on = T_off = T/2\n", "# Frequency is given by equation f= 1.44/((R_A+R_B)*C)\n", "R_A= 1.44/(2*f*C) # in ohm\n", "R_A=R_A*10**-3 # in k ohm\n", "R_B= R_A \n", "\n", "print \"The value of required resistors =\",int(round(R_A)),\"k ohm (68 ohm standart value)\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of required resistors = 72 k ohm (68 ohm standart value)\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 9.4 - Page No 296\n", " " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "f=700 # in Hz\n", "# R_A= R_B\n", "# T_on = T_off = T/2\n", "# Frequency is given by equation f= 1.44/((R_A+R_B)*C)\n", "C=0.01 # in micro F (assumed value)\n", "C=C*10**-6 # in F\n", "R_A= 1.44/(2*f*C) # in ohm\n", "R_A=R_A*10**-3 # in k ohm\n", "R_A=int(round(R_A) )\n", "R_B= R_A \n", "print \"The value of required resistors =\",(R_A),\"k ohm (100 ohm standart value)\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of required resistors = 103 k ohm (100 ohm standart value)\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 9.5 - Page No 296\n", " " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "f=800 # in Hz\n", "D=60 # in percent\n", "# Formula D= (R_A+R_B)/(R_A+2*R_B)*100 = 60\n", "# R_A + R_B = 0.6*R_A + 1.2*R_B\n", "# R_B= 2*R_A\n", "C=0.01 # in micro F (assumed value)\n", "C=C*10**-6 # in F\n", "# Frequency is given by equation f= 1.44/((R_A+R_B)*C)\n", "R_A= 1.44/(5*C*f) # in ohm\n", "R_A=R_A*10**-3 # in kohm\n", "R_B=2*R_A # in kohm\n", "print \"The value of C = %0.2f micro F\" %(C*10**6)\n", "print \"The value of R_A = %0.f kohm\" %R_A\n", "print \"The value of R_B = %0.f kohm\" %R_B\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of C = 0.01 micro F\n", "The value of R_A = 36 kohm\n", "The value of R_B = 72 kohm\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 9.6 - Page No 297\n", " " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "C=.05 # in micro F\n", "C=C*10**-6 # in F\n", "R= 12 # in kohm\n", "R=R*10**3 # in ohm\n", "V_CC= 5 # in volt\n", "V_BE= 0.7 # in volt\n", "V_D1= V_BE # in volt\n", "I_C= (V_CC-V_BE)/R # in A\n", "f_o= (3*I_C)/(V_CC*C) # in Hz\n", "f_o=f_o*10**-3 # in kHz\n", "print \"Frequency of free running ramp generator circuit = %0.1f kHz\" %f_o" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of free running ramp generator circuit = 4.3 kHz\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 9.7 - Page No 300\n", " " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "C=.1 # in micro F\n", "C=C*10**-6 # in F\n", "R_A= 20 # in kohm\n", "R_A=R_A*10**3 # in ohm\n", "PulseWidth= 1.1*R_A*C # in seconds\n", "print \"The output pulse width = %0.1f mili seconds\" %(PulseWidth*10**3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output pulse width = 2.2 mili seconds\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 9.9 - Page No 300\n", " " ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# Given data\n", "C=.02 # in micro F\n", "C=C*10**-6 # in F\n", "f=2 # frequency of the outpur trigger in kHz\n", "f=f*10**3 # in Hz\n", "T=1/f # in seconds\n", "# In a divide-by-5 circuit , n=5, so the pulse width, t_p= [0.2 + (n-1)]*T = [0.2 + (5-1)]*T = 4.2*T\n", "t_p=4.2*T # in soconds\n", "# Formula t_p = 1.1*R_A*C\n", "R_A= t_p/(1.1*C) # in ohm\n", "R_A=R_A*10**-3 # in kohm\n", "print \"The value of R_A = %0.2f k ohm (Standard value 100 kohm)\" %R_A" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R_A = 95.45 k ohm (Standard value 100 kohm)\n" ] } ], "prompt_number": 40 } ], "metadata": {} } ] }