{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter-7 : Oscillators (Sinusoidal As Well As Non-Sinusoidal)" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.1 - Page No 232" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from numpy import pi\n", "from math import sqrt\n", "# Given data\n", "f=200 # in Hz\n", "# Let us take\n", "C=0.1 # in micro F\n", "C=C*10**-6 # in F\n", "R=1/(2*pi*f*C*sqrt(6)) # in ohm\n", "R=R*10**-3 # in k ohm\n", "# R1>=10*R, Let\n", "R1=10*R # in kohm\n", "R_f= 29*R1 # in k ohm\n", "R_f=R_f*10**-3 # in M ohm\n", "R_f=math.ceil(R_f) \n", "print \"Resistor of phase-shift oscillator = %0.f Mohm\" %R_f" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistor of phase-shift oscillator = 1 Mohm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.2 - Page No 232" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "f=1 # in kHz\n", "f=f*10**3 # in Hz\n", "V_CC= 10 # in volt\n", "I_B_max= 500 # in nA (for 741 IC op-amp)\n", "I_B_max= I_B_max*10**-9 # in A\n", "I1= 100*I_B_max # in A\n", "V_out= (V_CC-1) # in volt\n", "V_in= V_out/29 \n", "R1= V_in/I1 # in ohm\n", "R1=R1*10**-3 #in k ohm\n", "# 5.6 k ohm resistor may be used for R1, being standard value resistor\n", "R1=5.6 # in k ohm (standard value)\n", "A=29 \n", "R_f= A*R1 \n", "# 180 k ohm resistor may be used to provide A > 29\n", "R_f=180 # in k ohm (standard value)\n", "R_comp= R_f \n", "R=R1 # in k ohm\n", "R=R*10**3 # in ohm\n", "C=1/(2*pi*f*R*sqrt(6)) # in F\n", "C=C*10**6 # in micro F\n", "print \"Value of R_comp = R_f = %0.f kohm\" %R_comp\n", "print \"Value of R = R1 = %0.1f in kohm\" %(R*10**-3)\n", "print \"Value of capacitor = %0.2f micro F\" %C" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of R_comp = R_f = 180 kohm\n", "Value of R = R1 = 5.6 in kohm\n", "Value of capacitor = 0.01 micro F\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.3 - Page No 235" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "f=10 # in kHz\n", "f=f*10**3 # in Hz\n", "I_Bmax= 500 # in nA\n", "I_Bmax= I_Bmax*10**-9 # in amphere\n", "# Let current through resistor R1 be equal to 100 times I_Bmax, so\n", "I_1= 100*I_Bmax # in amp\n", "Vcc= 10 # in volt\n", "Vout= Vcc-1 # in volt\n", "Addition_RfR1= Vout/(500*10**-6) # value of Rf+R1 in ohm\n", "Addition_RfR1=Addition_RfR1*10**-3 # in kohm\n", "# Rf= 2*R1, So\n", "R1= Addition_RfR1/3 # (used 5.6 kohm Standard value resistor)\n", "print \"Value of R1 = %0.f kohm (Standard value 5.6 k ohm)\" %R1\n", "R1= 5.6 # in kohm (used 5.6 kohm Standard value resistor)\n", "Rf= 2*R1 # in kohm# (used 12 kohm standard value resistor)\n", "print \"Value of Rf = %0.1f kohm (Standard value 12 k ohm)\" %Rf\n", "Rf= 12 # k ohm (used 12 kohm standard value resistor)\n", "R=R1 # in kohm\n", "C= 1/(2*pi*f*R) # in F (Used 2700pF standard value)\n", "C=2700 # in pF \n", "print \"Value of R = %0.1f kohm\" %R\n", "print \"Value of C = %0.f pF\" %C" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of R1 = 6 kohm (Standard value 5.6 k ohm)\n", "Value of Rf = 11.2 kohm (Standard value 12 k ohm)\n", "Value of R = 5.6 kohm\n", "Value of C = 2700 pF\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.4 - Page No 235" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "R= 1 # in kohm\n", "R=R*10**3 # in ohm\n", "C= 4.7 # in micro F\n", "C=C*10**-6 # in F\n", "omega=1/(R*C) # in radians/second\n", "f=omega/(2*pi) # in Hz\n", "print \"Frequency of the oscillation of the circuit = %0.2f Hz\" %f" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of the oscillation of the circuit = 33.86 Hz\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.6 - Page No 236" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "R= 10 # in kohm\n", "R=R*10**3 # in ohm\n", "C= 100 # in pF\n", "C=C*10**-12 # in F\n", "f=1/(2*pi*R*C) # in Hz\n", "print \"Frequency of the oscillation of the circuit = %0.2f kHz\" %(f*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of the oscillation of the circuit = 159.15 kHz\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.7 - Page No 238" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "fo= 318 # in Hz\n", "C= 0.015 # in microF\n", "C=C*10**-6 # in F\n", "R=0.159/(fo*C) # in ohm\n", "R=R*10**-3 # in kohm\n", "R=int(R) \n", "print \"Value of C1 = C2 = C3 = %0.3f micro F\" %(C*10**6)\n", "print \"Value of R1 = R2 = R3 = %0.f in kohm\" %R" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of C1 = C2 = C3 = 0.015 micro F\n", "Value of R1 = R2 = R3 = 33 in kohm\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.8 - Page No 238" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "fo= 1.5 # in kHz\n", "fo=fo*10**3 # in Hz\n", "C= 0.01 # in microF\n", "C=C*10**-6 # in F\n", "R=0.159/(fo*C) # in ohm\n", "R=R*10**-3 # in kohm\n", "R=int(R) \n", "print \"Value of C1 = C2 = C3 = %0.2f micro F\" %(C*10**6)\n", "print \"Value of R1 = R2 = R3 = %0.f in kohm\" %R" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of C1 = C2 = C3 = 0.01 micro F\n", "Value of R1 = R2 = R3 = 10 in kohm\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.9 - Page No 245" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "C= 0.1 # in microF\n", "C=C*10**-6 # in F\n", "R=12 # in kohm\n", "R=R*10**3 # in ohm\n", "R1=120 # in kohm\n", "R1=R1*10**3 # in ohm\n", "Rf=1 # in Mohm\n", "Rf=Rf*10**6 # in ohm\n", "V_sat= 10 # in volt\n", "# Part(i)\n", "f=Rf/(4*R1*R*C) #in Hz\n", "print \"(i) : Signal Frequency = %0.3f kHz\" %(f*10**-3)\n", "\n", "# Part(ii)\n", "Vp_p= float(2*R1*V_sat)/Rf # in Vp_p\n", "\n", "print \"(ii) : Amplitude of the triangular wave = %0.1f Vp_p\" %Vp_p\n", "\n", "# Part(iii)\n", "Vp_p= (V_sat)-(-V_sat) \n", "print \"(iii) : Amplitude of the square wave = %0.f Vp_p\" %Vp_p" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) : Signal Frequency = 1.736 kHz\n", "(ii) : Amplitude of the triangular wave = 2.4 Vp_p\n", "(iii) : Amplitude of the square wave = 20 Vp_p\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.11 - Page No 246" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "C1= 0.01 # in microF\n", "C1=C1*10**-6 # in F\n", "R1=120 # in kohm\n", "R1=R1*10**3 # in ohm\n", "R2=1.2 # in kohm\n", "R2=R2*10**3 # in ohm\n", "R3=6.8 # in kohm\n", "R3=R3*10**3 # in ohm\n", "V_sat= 15 # in volt\n", "# Part(a)\n", "Vp_p= 2*(R2/R3)*V_sat #in volt\n", "print \"(a) : Peak to peak amplitude of triangular wave = %0.3f volt\" %Vp_p\n", "\n", "# Part(b)\n", "fo= R3/(4*R1*C1*R2) #in Hz\n", "print \"(b) : Frequency of triangular wave = %0.2f kHz\" %(fo*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) : Peak to peak amplitude of triangular wave = 5.294 volt\n", "(b) : Frequency of triangular wave = 1.18 kHz\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example : 7.12 - Page No 249" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "# Given data\n", "T= 100 # in micro sec\n", "T=T*10**-6 #in se\n", "V_sat= 12 # in volt\n", "V1= 0.7 # in volt\n", "V= 0.7 # in volt\n", "V_D1= V \n", "V_D2=V_D1 \n", "C1= 0.1 # in microF\n", "C1=C1*10**-6 # in F\n", "Bita1= 0.1 \n", "# Formula T= R3*C1*log((1+V1/V_sat)/(1-Bita1))\n", "R3= T/(C1*log((1+V1/V_sat)/(1-Bita1))) # in ohm\n", "print \"Value of R3 = %0.3f kohm (Standard value 6.8 kohm)\" %(R3*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of R3 = 6.171 kohm (Standard value 6.8 kohm)\n" ] } ], "prompt_number": 21 } ], "metadata": {} } ] }