{ "metadata": { "name": "ch_5" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "

Chapter 5: Operational Amplifiers- Non-linear Circuits

" ] }, { "cell_type": "markdown", "source": [ "

Example No.5.1, Page No: 234

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Vz1=5.5 #Volatage in volt", "Vz2=5.5 #Voltage in volt", "Aol=100000.0 #Open loop gain", "Vd=0.7 #Voltage in volt", "", "#Calculations:", "Vo=Vz1+Vd # Plus or minus", "Vich=Vo/Aol #Calculating change in voltage", "Vich=Vich*1000.0 #Calculating change in voltage", "", "#Results:", "print('Delta Vi=%.3f mV'%Vich)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Delta Vi=0.062 mV" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "source": [ "

Example No. 5.2, Page No: 239

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "R1=56.0*10**3 #Resistance value in ohm", "R2=150.0 #Resistance value in ohm", "Vi=1.0 #Voltage in volt", "f=50.0 #Frequency in hertz", "Vsat=13.5 #Voltage in volt", "Vref=0.0 #Voltage in volt", "", "#Calculations:", "Vut=Vsat*R2/(R1+R2) #Calculating Vut voltage", "Vut=Vut*1000.0 #Calculating Vut voltage", "VL=-Vut #Calculating Vlt voltage", "", "#Results:", "print('Vut= %d mV'%Vut)", "print('\\nVL= %d mV'%VL)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vut= 36 mV", "", "VL= -36 mV" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "

Example No: 5.3, Page No: 249

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Vclipl=0.35 #Voltage in volt", "Vp=0.5 #Voltage in volt", "gain=10.0 #Gain", "R=1000.0 #Resistance in ohm", "", "#Calculations:", "Vounclip=Vp*gain #Calculating unclipped output voltage", "Voclip=Vclipl*gain #Calculating clipped output voltage ", "Vb=Voclip-0.7 #Calculating breakdown voltage", "", "#Results:", "print('When unclipped, output voltage= %.1f V'%Vounclip)", "print('\\nWhen clipped, output voltage= %.1f V'% Voclip)", "print('\\nZener diode breakdown voltage= %.1f V'%Vb)", "print('\\nA 2.8V Zener diode should be connected')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "When unclipped, output voltage= 5.0 V", "", "When clipped, output voltage= 3.5 V", "", "Zener diode breakdown voltage= 2.8 V", "", "A 2.8V Zener diode should be connected" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "

Example No: 5.4, Page NO: 251

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Vref=1.5 #Voltage in volt", "", "#Part A", "#Variable declaration:", "Vpp=5.0 #Voltage in volt", "Vnp=2.5 #Voltage in volt", "", "#Calculation:", "Vc=Vnp + Vref #Calculating capacitor voltage ", "", "#Result:", "print('\\nCapacitor voltage Vc= %.1f V'%Vc) ", "", "#Part B", "#Calculation:", "Vopeak=Vnp + Vref +Vpp #Calculating peak clamped output voltage", "", "#Result:", "print('\\nPeak value of clamped output voltage Vo(peak)= %.1f V'%Vopeak)", "", "#Part C", "#Calculation:", "Voc=0.7 + Vref #Calating output voltage during charging", "", "#Result:", "print('\\nOp-amp output voltage during charging Vo= %.1f V'% Voc) ", "", "#Part D", "#Calculation:", "Vd=Vref-Vopeak #Calculating maximum differenctial input voltage", "", "#Result:", "print('\\nMaximum differential input voltage Vd= %.1f V'%Vd) " ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Capacitor voltage Vc= 4.0 V", "", "Peak value of clamped output voltage Vo(peak)= 9.0 V", "", "Op-amp output voltage during charging Vo= 2.2 V", "", "Maximum differential input voltage Vd= -7.5 V" ] } ], "prompt_number": 4 } ] } ] }