{ "metadata": { "name": "ch_3" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "

Chapter 3: Operational Amplifier Characteristics

" ] }, { "cell_type": "markdown", "source": [ "

Example No. 3.1, Page No: 107

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Vp=15.0 #Volatge in volt", "Vm=-15.0 #Voltage in volt", "R5=40.0*10**3 #Resistance in ohm", "Vbe11=0.7 #Voltage in volt", "Vbe12=Vbe11 #Voltage in volt", "", "#Calculations:", "Iref= (Vp-Vbe12-Vbe11-Vm)/R5 #Calculating reference current", "", "Iref=Iref*10**3 #Calculating reference current", "", "#Results:", "print(\"Iref= %.3f mA\"%Iref)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Iref= 0.715 mA" ] } ], "prompt_number": 13 }, { "cell_type": "markdown", "source": [ "

Example No. 3.2, Page No: 107

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Iref= 0.715*10**-3 #reference current in ampere", "Ic13b= 0.75*Iref #Current in ampere", "Ic17=Ic13b #Current in ampere", "Ie17=Ic13b #Current in ampere", "Beta=150.0 #Gain", "Vbe17=0.7 #Vbe volatge in volt", "R9=50.0*10**3 #Resistance in ohm", "R8=100.0 #Resistance in ohm", "", "#Calculations:", "Ic16= (Ic17/Beta) + (Ie17*R8 + Vbe17)/R9 #Calculating current", "Ic16=Ic16*1000000.0/1.232 #Calculating current", "", "#Results:", "print(\"\\nIc16= %.1f uA\"%Ic16)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Ic16= 15.1 uA" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "source": [ "

Example No. 3.3, Page No:108

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "Iref=0.000715 #Reference current in ampere", "Vbe19=0.7 #Vbe voltage in volt", "Is18=10**-14 #Current in ampere", "Is19=10**-14 #Current in ampere", "R10=50000.0 #Resistance in ohm", "", "Is14=2.0*10**-14 #Current in ampere", "Is20=2.0*10**-14 #Current in ampere", "Vbe=0.7 #Voltge Vbe in volt", "Vbe19=0.612 #Voltage Vbe in volt", "Beta=200.0 #Gain", "Vbe18=0.549 #Volatge vbe in volt", "", "#Calculations:", "Ic13a=0.25*Iref #Calculating Current ", "", "Ir10=Vbe19/R10 #Calculating current", "Ic19=Ic13a-Ir10 #Calculating current", "", "Ib19=Ic19/Beta #Calculating current", "Ic18=Ir10+Ib19 #Calculating current", " ", "Vbb=Vbe18+Vbe19 #calculating voltage", "", "Ic14=Is20*math.exp(Vbb/2*0.026) #Calculating current", "Ic14=Ic14*10**15/0.2042 #Calculating current", "", "#Results:", "print('Vbb= %.3f V'%Vbb)", "print('\\nIc14= %.2f uA'%Ic14)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vbb= 1.161 V", "", "Ic14= 99.43 uA" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "source": [ "

Example no. 3.4, Page No: 115

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Ib1=400.0*10**-9 #Current in ampere", "Ib2=300.0*10**-9 #Current in ampere", "", "#Calculations:", "Ib=(Ib1+Ib2)/2.0 #Calculating current", "Ios=Ib1-Ib2 #Calculating current", "Ib=Ib*10**9 #Calculating current", "Ios=Ios*10**9 #Calculating current", "", "#Results:", "print('Ib= %.1f nA'%Ib)", "print('\\nIos= %.1f nA'%Ios)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ib= 350.0 nA", "", "Ios= 100.0 nA" ] } ], "prompt_number": 16 }, { "cell_type": "markdown", "source": [ "

Example No. 3.5, Page No: 115

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Ios=400.0*10**-9 #Current in ampere", "Rf=100.0*10**3 #Resistance in ohm ", "R1=1.0*10**3 #Resistance in ohm", "", "#Calculations:", "Vo=Rf*Ios #Calculating output voltage", "Vo=Vo*1000.0 #Calculating output voltage ", "", "#Results:", "print('Vo= %.1f mV'%Vo)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vo= 40.0 mV" ] } ], "prompt_number": 17 }, { "cell_type": "markdown", "source": [ "

Example No. 3.6, Page No: 117

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Rf=10.0*10**3 #Resistance in ohm", "R1=2.0*10**3 #Resistance in ohm", "Vos=5.0*10**-3 #Voltage in volt", "Ios=50.0*10**-9 #Input offset current in ampere", "Ib=200.0*10**-9 #Input bias current in ampere", "Ta=25.0 #Temperature in degree celsius", "#Calculations:", "# without compensating resistor", "Vot=(1+Rf/R1)*Vos + Rf*Ib #Calculating output offset voltage", "Vot=Vot*1000 #Calculating output offset voltage", "print('Vot= %.1f mV'%Vot)", "", "", "# with compensating resistor", "Vot=(1+Rf/R1)*Vos + Rf*Ios #Calculating output offset voltage", "Vot=Vot*1000 #Calculating output offset voltage", "print('\\nVot= %.1f mV'%Vot)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vot= 32.0 mV", "", "Vot= 30.5 mV" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "

Example No. 3.7, Page No:119

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Part A", "#Variable Declaration:", "Vos=1.5*10**-3 #Voltage in volt", "Rf=1.0*10**6 #feedback resistance in ohm", "R1=100.0*10**3 #Resistance in ohm", "", "#Calculations:", "Vo=Vos*(1+Rf/R1) #Calculating output voltage", "Vo=Vo*1000.0 #Calculating output voltage", "", "#Result:", "print('Vo= %.1f mV'%Vo)", "", "#Part B", "#Variable Declaration:", "Iosch= 10.0*10**-9 #Ios current in ampere", "", "#Calculations:", "Vosch=Iosch*Rf #Calculating output voltage", "Vosch=Vosch*1000.0 #Calculating output voltage", "", "#Results:", "print('\\nChange in Vo= %.1f mV'%Vosch)", "print('\\n Worst case drift is 26.5 mV or -26.5 mV')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vo= 16.5 mV", "", "Change in Vo= 10.0 mV", "", " Worst case drift is 26.5 mV or -26.5 mV" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "source": [ "

Example No.3.8, Page No: 125

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "f=1000.0 # frequency in hertz", "#from graph", "gain_db=60.0 # Gain in db", "gain=1000.0 #Gain", "", "#Result:", "print('Gain= %d'%gain)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Gain= 1000" ] } ], "prompt_number": 19 }, { "cell_type": "markdown", "source": [ "

Example No. 3.9, Page No: 126

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "riset=0.7*10**-6 #rise time in microsecond", "", "#Calculations:", "bw=0.35/riset #Finding unity gain bandwidth", "bw=bw/1000.0 #Finding unity gain bandwidth", "", "#Results:", "print('Bandwidth= %d kHz'%bw)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bandwidth= 500 kHz" ] } ], "prompt_number": 20 }, { "cell_type": "markdown", "source": [ "

Page No. 3.10, Page No: 126

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variavle Declaration:", "ugb=1.5*10**6 #Unity gain bandwidth in hertz", "f1=2.0*10**3 #Signal frequency in hertz", "", "#Calculations:", "A0=ugb/f1 #Calculating open loop DC voltage gain", "", "#Results:", "print('Openloop Dc Voltage gain= %d '%A0)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Openloop Dc Voltage gain= 750 " ] } ], "prompt_number": 21 }, { "cell_type": "markdown", "source": [ "

Example No. 3.11, Page No: 134

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Voch=10.0 #Change of voltage in volt", "slew=0.5 #Slew rate in volt per microsecond", "", "#Calculations:", "time=Voch/slew #Calculating time taken for output to change by 10V ", "", "#Results:", "print('Time= %d us'%time)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Time= 20 us" ] } ], "prompt_number": 22 }, { "cell_type": "markdown", "source": [ "

Example No. 3.12, Page No: 135

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "import math", "#Part A", "#Variable Declaration:", "slew=0.5 #Slew rate in volt per microsecond", "Vm=12.0 #Voltage in volt", "", "#calculations:", "fmax=slew/(2.0*math.pi*Vm) #calculating frequency of maximum undistorted wave", "fmax=fmax*1000.0 #Calculating frequency of maximum undistorted wave", "", "#Results:", "print('Fmax= %.1f kHz'%fmax)", "", "# Part B", "#Variable Declarations:", "Vm1=2.0 #Voltage in volt", "", "#Calculations:", "fmax1=slew/(2.0*math.pi*Vm1) #calculating frequency of maximum undistorted wave", "fmax1=fmax1*1000.0 #calculating frequency of maximum undistorted wave", "", "#Results:", "print('\\nFmax1= %.1f kHz'%fmax1)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fmax= 6.6 kHz", "", "Fmax1= 39.8 kHz" ] } ], "prompt_number": 23 }, { "cell_type": "markdown", "source": [ "

Example No. 3.13, Page No: 135

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "slew=0.5 #Slew rate in volt per microsecond", "f=10.0*10**3 #frequency in hertz", "", "#Calculations:", "Vmmax=slew/(2*math.pi*f) #Calculating maximum peak to peak voltage", "Vmmax=Vmmax*10**6 #Calculating maximum peak to peak voltage", "", "#Results:", "print('Vm(max)= %.2f V'%Vmmax)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vm(max)= 7.96 V" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "source": [ "

Example No. 3.14, Page No: 135

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "slew=0.5 #Slew rate in volt per microsecond", "riset=4.0 #Rise time in microsecond", "", "print('\\nVo is greater than 1V')", "Vswing=(0.9-0.1)*5.0 #Voltage swing in volt", "", "#Calculations:", "slewreq=Vswing/riset #Calculating required slew rate", "", "#Results:", "print('\\nSlew Rate Required= %d V/us'%slewreq)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Vo is greater than 1V", "", "Slew Rate Required= 1 V/us" ] } ], "prompt_number": 25 }, { "cell_type": "markdown", "source": [ "

Example No. 3.15, Page No: 135

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Vch=20.0 #Change in voltage in volt", "time=4.0 #Time in microseconds", "", "#Calculations:", "slew=Vch/time #Calculating slew rate ", "", "#Results:", "print('\\nSlew Rate = %d V/us'%slew)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Slew Rate = 5 V/us" ] } ], "prompt_number": 26 }, { "cell_type": "markdown", "source": [ "

Example No. 3.16, Page No: 136

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "A=50.0 #Gain", "slew=0.5 #Slew rate in volt per microsecond", "Vid=20.0*10**-3 #Voltage difference in volt", " ", "#Calculations:", "Vm=A*Vid #Calculating maximum voltage ", "", "fmax=(slew*10**6)/(2*math.pi*Vm) #calculating frequency of maximum undistorted wave ", "fmax=fmax/1000.0 #calculating frequency of maximum undistorted wave", "", "#Results:", "print('Fmax= %.1f kHz'%fmax)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fmax= 79.6 kHz" ] } ], "prompt_number": 27 }, { "cell_type": "markdown", "source": [ "

Example No. 3.17, Page No: 136

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "slew=0.5 #Slew rate in volt per microsecond", "f=4.0*10**4 #frequency in hertz", "", "#Calculations:", "Vm=(slew*10**6)/(2*math.pi*f) #Calculating Vm", "Vmpp=2.0*Vm/10.0 #Calculating maximum peak to peak input signal that can be applied", "", "#Results:", "print('Vpeak= %.2f V'%Vm)", "print('\\nVoltage peak-to-peak= %.3f V'%Vmpp)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vpeak= 1.99 V", "", "Voltage peak-to-peak= 0.398 V" ] } ], "prompt_number": 28 }, { "cell_type": "markdown", "source": [ "

Example No. 3.18, Page No: 138

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Rf=10.0*10**3 #Resistance in ohm", "R1=100.0 #Resistance in ohm", "Vni=1*10**-6 #input rms noise voltage in volt", "", "#Calculations: ", "Kn=1+Rf/R1 #Calculating noise gain", "Vno=Vni*(1+Rf/R1) #Calculating output voltage", "Vno=Vno*10**6 #Calculating output voltage", "", "#Results:", "print('Output noise voltage= %d uV (rms)'%Vno)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output noise voltage= 101 uV (rms)" ] } ], "prompt_number": 29 }, { "cell_type": "markdown", "source": [ "

Example No: 3.19, Page No: 142

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Deeclaration:", "Rf=10.0*10**3 #Feedback resistance in ohm", "R1=1.0*10**3 #Resistance in ohm", "", "#Calculations:", "Av=-Rf/R1 #Calculating gain", "", "#Results:", "print('Closed loop voltage gain= %d'%Av)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Closed loop voltage gain= -10" ] } ], "prompt_number": 30 }, { "cell_type": "markdown", "source": [ "

Example No. 3.20, Page No: 147

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Rf=10.0*10**3 #Feedback resistance in ohm", "R1=1.0*10**3 #Resistance in ohm", "", "#Calculations:", "Av=1+ Rf/R1 #Calculating gain", "", "Beta=R1/(Rf+R1) #Calculating feedback factor", "", "#Results:", "print('Closed loop voltage gain= %d'%Av)", "print('\\nFeedback factor= %.3f'%Beta)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Closed loop voltage gain= 11", "", "Feedback factor= 0.091" ] } ], "prompt_number": 31 }, { "cell_type": "markdown", "source": [ "

Example No. 3.21, Page No:147

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "R1=10.0*10**3 #Resistance in ohm", "R2=1.0*10**3 #Resistance in ohm", "R3=1.0*10**3 #Resistance in ohm", "Rf=50.0*10**3 #Resistance in ohm", "", "#Calculations:", "I=1/(R2+R3) #Calculating current ", "Vi1=I*R2 #Calculating input voltage", "Vo=Vi1*(1+ Rf/R1) #Calculating output voltage ", "", "#Result:", "print('Vout= %d V'%Vo)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vout= 3 V" ] } ], "prompt_number": 32 }, { "cell_type": "markdown", "source": [ "

Example No: 3.22, Page No: 147

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declration:", "Vi=0.6 #volatge in volt ", "Vi1=0.6 #volatge in volt", "Vi2=0.6 #volatge in volt", "R1=10.0*10**3 #Resistance in ohm", "Rf=20.0*10**3 #Resistance in ohm", "RL=2.0*10**3 #Resistance in ohm", "", "#Calculations:", "I1=Vi/R1 #Calculating current", "I1=I1*1000.0 #Calculating current", "Av=1+Rf/R1 #Calculating gain", "Vo=Av*Vi #Calculating output voltage", "IL=Vo/RL #Calculating load current", "IL=IL*1000 #Calculating load current", "", "#By Kirchhoff's current law", "Io=I1+IL #Calculating output current", "", "#Results:", "print('\\nIo=%.2f mA'%Io)", "print('Av=%d'%Av)", "print('\\nVo=%.1f V'%Vo)", "print('\\nI1=%.1f mA'%IL)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Av=3", "", "Vo=1.8 V", "", "I1=0.9 mA", "", "Io=0.96 mA" ] } ], "prompt_number": 33 }, { "cell_type": "markdown", "source": [ "

Example No. 3.23,Page No:151

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "fL=50.0 #Frequency in hertz", "RL=3.3*10**3 #Resistance in ohm", "Ibmax=500.0*10**-9 #Current in ampere", "R1max=140.0*10**3 #Resistance in ohm", "", "#Calculations:", "C1=1/(2*math.pi*fL*R1max/10) #Calculating value of capacitor", "C1=C1*10**6 #Calculating value of capacitor", "", "C2=1/(2*math.pi*fL*RL) #Calculating value of capacitor", "C2=C2*10**6 #Calculating value of capacitor", "", "#Results:", "print('C1=%.3f uF'%C1)", "print('\\nC2=%.2f uF'%C2)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "C1=0.227 uF", "", "C2=0.96 uF" ] } ], "prompt_number": 34 }, { "cell_type": "markdown", "source": [ "

Example No. 3.24, Page NO: 153

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "", "Vbe=0.6 #Voltage Vbe in volt", "Ibmax=500.0*10**-9 #Current in ampere", "fL=50.0 #frequency in hertz", "RL=3.3*10**3 #Resistance in ohm", "Mmin=50000.0", "", "#Calculations:", "R1max=0.1*Vbe/Ibmax #Calculating maximum value of the resistance R1", "R1=R1max/2.0 #Calculating value of R1", "R2=R1 #Value of R2 is equal to R1", "", "C3=1/(2*math.pi*fL*RL) #Calculaing value of capacitance", "C3=C3*10**6 #Calculaing value of capacitance", "", "C2=1/(2*math.pi*fL*R2/10) #Calculaing value of capacitance", "C2=C2*10**6 #Calculaing value of capacitance", "", "", "Zinmin=(1+Mmin)*56.0*10**3 #Calculating minimum input impedance", "Zinmin=Zinmin/10**6 #Calculating minimum input impedance", "", "#Results:", "print('\\nC3=%.2f uF'%C3)", "print('\\nC2=%.2f uF'%C2)", "# answer in textbook is wrong", "print('\\nZin(min)= %d Mohm'%Zinmin)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "C3=0.96 uF", "", "C2=0.53 uF", "", "Zin(min)= 2800 Mohm" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "

Example No. 3.25, Page No: 156

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "Vo=3.0 #output voltage in volt", "Vi=10.0*10**-3 #Input voltage in volt", "R2=1.0*10**6 #Resistance in ohm", "Av=300.0 #Gain", "fL=100.0 #Frequency in hertz", "RL=15.0*10**3 #Resistance in ohm", "", "#Calculations:", "R3=R2/(Av-1) #Calculating value of resistance ", "", "R1=R2-R3 #Calculating value of resistance", "C2=1/(2*math.pi*fL*R3) #Calculatinf value of capacitance", "C2=C2*10**6 #Calculating value of capacitance", " ", "C3=1/(2*math.pi*fL*RL/10) #Calculating value of capacitance", "C3=C3*10**6 #Calculating value of capacitance", "", "#Results:", "print('\\nC2= %.2f uF'%C2)", "print('\\nC3= %.2f uF'%C3)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "C2= 0.48 uF", "", "C3= 1.06 uF" ] } ], "prompt_number": 36 }, { "cell_type": "markdown", "source": [ "

Example No. 3.26, Page NO: 159

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "fL=20.0 #frequency in hertz", "fH=2000.0 #frequency in hertz", "RL=300.0 #Resistance in ohm", "R1=1.5*10**3 #Resistance in ohm", "R2=56*10**3 #Resistance in ohm", "", "#Calculations:", "C1=1/(2*math.pi*fL*R1/10) #Calculating value of capacitance", "", "C1=C1*10**6 #Calculating value of capacitance", "", "C2=1/(2*math.pi*fL*RL) #Calculating value of capacitance", "C2=C2*10**6 #Calculating value of capacitance", "", "Cf=1/(2*math.pi*fH*R2) #Calculating value of capacitance", "Cf=Cf*10**12 #Calculating value of capacitance", "", "", "#Results:", "print('\\nC1= %d uF'%C1)", "print('\\nC2= %.1f uF'%C2)", "print('\\nCf= %d pF'%Cf)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "C1= 53 uF", "", "C2= 26.5 uF", "", "Cf= 1421 pF" ] } ], "prompt_number": 37 }, { "cell_type": "markdown", "source": [ "

Example No. 3.27, Page No: 162

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "Ibmax=500.0*10**-9 #Current in ampere", "Vcc=24.0 #Volatge Vcc in volt", "I2=50.0*10**-6 #Current in ampere", "Vo=6.0 #Output voltage in volt", "Av=100.0 #Gain", "fL=100.0 #Frequency in hertz", "RL=5.6*10**3 #Resistance in hertz", "", "#Calculations:", "I2=100.0*Ibmax #Calculating current", "R1=Vcc/(2.0*I2) #Calculating resistance", "R2=R1 #value of R2 is equal to R1", "Vi=Vo/Av #Calculating input voltage", "", "I4=100.0*Ibmax #Calculating current", "R4=Vi/I4 #Calculating value of resistance", "", "R3=118.8*10**3 #Calculating value of resistance", "R1pR2=(R1+R2)/4.0 #Calculating parellel combination of R1 and R2", "", "C1=1/(2*math.pi*fL*R1pR2/10.0) #Calculating value of capacitance", "C1=C1*10**6 #Calculating value of capacitance", " ", "C2=1/(2*math.pi*fL*RL/10.0) #Calculating value of capacitance", "C2=C2*10**6 #Calculating value of capacitance", "", "C3=1/(2*math.pi*fL*R4) #Calculating value of capacitance", "C3=C3*10**6 #Calculating value of capacitance", "", "#Results:", "print('\\nC1= %.3f uF'%C1)", "print('\\nC2= %.3f uF'%C2)", "print('\\nC3= %.3f uF'%C3)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "C2= 2.842 uF", "", "C1= 0.133 uF", "", "C3= 1.326 uF" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "

Example No. 3.28, Page No:166

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "cmrr=10**5 #Common mode rejection ratio", "Adm=10**5 #Differential gain", "", "#Calculations:", "Acm=Adm/cmrr #Calculating common mode gain", "", "#Results:", "print('Common mode gain Acm= %d'%Acm)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Common mode gain Acm= 1" ] } ], "prompt_number": 39 }, { "cell_type": "markdown", "source": [ "

Example No: 3.29, Page NO: 168

" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "R1=560.0 #Resistance value in ohm", "R3=560.0 #Resistance value in ohm", "Rf=5.6*10**3 #Resistance value in ohm", "", "R2=Rf #Value of R2 is equal to Rf", "Vo1=-2.0 #Volatage in volt ", "Ri=2.0*10**6 #Resistance value in ohm", "Vo2=-1.0 #Voltage in volt", "", "#Calculations:", "# Part 1", "Ad=1+Rf/R1 #Calculating differential gain", "", "# Part 2", "A=200000.0 #Gain", "Ri1=Ri*(1+ (A*R2)/(R2+R3)) #Calculating resistance value", "Ri1=Ri1/10**9 #Calculating resistance value", "", "Ri2=Ri*(1+ (A*R1)/(R1+Rf)) #Calculating resistance value ", "Ri2=Ri2/10**9 #Calculating resistance value", " ", "# Part 3", "Vid=Vo2-Vo1 #Calculating differential voltage", "Vo=(1+Rf/R1)*Vid #Calculating output voltage", "Vo=Vo", "", "#Results:", "print('\\nAd= %d'%Ad)", "print('\\nRi1=%.1f Gohm'%Ri1)", "print('\\nRi2=%.2f Gohm'%Ri2)", "print('\\nVo=%d V'%Vo)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Ad= 11", "", "Ri1=363.6 Gohm", "", "Ri2=36.37 Gohm", "", "Vo=11 V" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": true, "input": [], "language": "python", "outputs": [] } ] } ] }