{ "metadata": { "name": "ch_2" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "<h1>Chapter 2: Circuit configuration for linear IC's<h1>" ] }, { "cell_type": "markdown", "source": [ "<h3>Example No. 2.1, Page no:40<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Vcc=5.0 #voltage Vcc in volt", "Vbeon=0.6 #Voltage Vbeon in volt", "Beta=150.0 #gain", "Io=100.0*10**-6 #output current in amperes", "", "#Calculations:", "Iref=Io*(1+ 2/Beta) #calculating reference current", "Iref=Iref*10**6 #calculating reference current", "", "R=(Vcc-Vbeon)/Iref #Calculating value of resistance", "R=R*1000.0 #Calculating value of resistance", "", "#Results:", "print(\"Iref= %.2f uA\"% Iref)", "print(\"\\nResistance= %.2f kohm\"% R)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Iref= 101.33 uA", "", "Resistance= 43.42 kohm" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "source": [ "<h3>Example No. 2.2, Page No:40<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declarations:", "Vbe=0.7 #voltage Vbe in volt", "Vcc=12.0 #voltage Vcc in volt", "Rc1=1000.0 #collector resistance in ohm", "Rc2=330.0 #collector resistance in ohm", "", "#Calculations:", "Iref=(Vcc-Vbe)/Rc1 #calculating reference current ", "I0=Iref #Output current is equal to Reference current ", "V0=Vcc-Rc2*I0 #Calculating output volatge", "", "Iref=Iref/10**-3 #calculating reference current", "", "#Results:", "print(\"Iref= %.1f mA\"%Iref)", "print(\"\\nV0= %.3f V\"%V0)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Iref= 11.3 mA", "", "V0= 8.271 V" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "<h3>Example 2.3, Page No:40<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration", "Vbe=0.6 #Voltage Vbe in volt", "Vz=4.7 #Zener voltage in volt", "Re=1000.0 #Emitter resistance in ohm", "", "#Calculations:", "Vre=Vz-Vbe #Calculating voltage acrross emitter resistance", "", "I=(Vre)/Re #Calculating output current", "I=I/10**-3 #Calculating output current", "", "#Results", "print(\"I=%.1f mA\"%I)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "I=4.1 mA" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "<h3>Example No. 2.4, Page No.: 42<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "Vcc=20.0 #Vcc in volt", "R1=19300.0 #resistance in ohm", "Vbe=0.7 #Vbe voltage in Volt", "Ic2=0.000005 #current in amperes", "Vt=0.026 # Vt voltage in volt", "", "#Calculations:", "Ic1=(Vcc-Vbe)/R1 #Calculating current through transistor Q1", "", "R2=(Vt/Ic2)*math.log(Ic1/Ic2) #Calculating value of R2 for desired current through transistor Q2", "", "Ic1=Ic1/10**-3 #Calculating current through transistor Q1", "R2=R2/10**3 #Calculating value of R2 for desired current through transistor Q2", "", "#Results:", "print(\"Ic1= %d mA\"%Ic1)", "print(\"\\nR2= %.2f kohm\"%R2)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ic1= 1 mA", "", "R2= 27.55 kohm" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "source": [ "<h3>Example No.2.5, Page No: 44<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Beta=100.0 #Gain for transistor", "R=20000.0 #Resistance in ohm", "Vcc=5.0 #Volatage Vcc in volt", "Vbe=0.6 #Voltage Vbe in volt", "N=3.0 #Number of multiple current source", "", "#Calculations: ", "Iref=(Vcc-Vbe)/R #Calculating reference current", "", "Ic=Iref*(1+ 4/Beta) #Calculating current through transistor Q", "Ic1=Iref*(Beta)/(Beta+N+1) #Calculating current through transistor Q1", "Ic2=Iref*(Beta)/(Beta+N+1) #Calculating current through transistor Q2", "Ic3=Iref*(Beta)/(Beta+N+1) #Calculating current through transistor Q3", "", "Iref=Iref/10**-3 #Calculating Reference current", "Ic1=Ic1/10**-3 #Calculating current through transistor Q1", "", "#Results:", "print(\"Iref= %.2f mA\"%Iref)", "print(\"\\nIc1=Ic2=Ic3= %.3f mA\"%Ic1)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Iref= 0.22 mA", "", "Ic1=Ic2=Ic3= 0.212 mA" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "source": [ "<h3>Example No.2.6, Page NO: 52<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Iref=0.25*10**-3 #Reference current in amperes", "Io=0.2*10**-3 #Outpyt current in amperes", "kn=20*10**-6 #Transconductance in ampere per volt square", "Vth=1.0 #Threshold voltage in volt", "Vgs2=1.752 #Voltage Vgs2 in volt", "lamb=0.0 #Channel length modulation parameter", "Vdd=5.0 #Voltge Vdd in volt", "Vss=0.0 #voltage Vss in volt", "", "#Calculations:", "wbyltwo=Io/(kn*(Vgs2-Vth)**2) #calculating width by length 2 ratio", "Vdssat=Vgs2-Vth #Calculating voltage Vdssat", "Vgs1=Vgs2 #Volage Vgs1 is eqaul to Vgs2", "wbylone=Iref/(kn*(Vgs2-Vth)**2) #Calculating width by length 1 ratio", "Vgs3=Vdd-Vss-Vgs1 #Calculating Vgs3", "wbylthr=Iref/(kn*(Vgs3-Vth)**2) #calculating width by length 3 ratio", "", "#Results:", "print(\"W/L2= %.1f\"%wbyltwo)", "print(\"\\nVds(sat)= %.3f V\"%Vdssat)", "print(\"\\nW/L1= %.1f\"%wbylone)", "print(\"\\nVgs3= %.3f V\"%Vgs3)", "print(\"\\nW/L3= %.2f\"% wbylthr)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "W/L2= 17.7", "", "Vds(sat)= 0.752 V", "", "W/L1= 22.1", "", "Vgs3= 3.248 V", "", "W/L3= 2.47" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "source": [ "<h3>Example No. 2.7, Page No: 75<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "cmrra=1000.0 #common mode rejection ratio", "cmrrb=10000.0 #common mode rejection ratio ", "v1a=100.0*10**-6 #input voltage in volt", "v2a=-100.0*10**-6 #input voltage in volt", "v1b=1100.0*10**-6 #input voltage in volt", "v2b=900.0*10**-6 #input voltage in volt", "", "#Calculations", "#for first set", "vida=v1a-v2a #Calculating differential volatge", "vcma=(v1a+v2a)/2 #calculating common mode voltage", "vic=0.0 #Calculating common mode voltage", "voa=vida*(1+vic/(cmrra*vida)) #Calculating Output voltage", "voa=voa*10**6 #Calculating output volatge", "", "# for second set", "vidb=v1b-v2b #Calculating differential volatge", "vic=(v1b+v2b)/2 #calculating common mode voltage", "vob=vidb*(1+vic/(cmrrb*vidb)) #Calculating Output voltage", "vob=vob*10**6 #Calculating Output voltage", "", "#Results:", "print(\"\\nVo for second set= %.1f uV\"%vob)", "print(\"Vo for first set= %.1f uV\"% voa)", "", "#answer in textbook is wrong" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Vo for second set= 200.1 uV", "Vo for first set= 200.0 uV" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "source": [ "<h3>Example No.2.8, Page No.76<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "Beta=100.0 #Gain", "Vee=15.0 #Voltage Vee in volt", "Vcc=15.0 #Voltage Vcc in volt", "Vbe=0.7 #Voltage Vbe in volt", "Re=65.0*10**3 #Resistance in ohm", "Rc=65.0*10**3 #Resistance in ohm", "alpha=100.0/101.0 #Gain", "Ve=-0.7 #Voltage Ve in volt", "", "#Calculations:", "Ie=(Vee-Vbe)/(2*Re) #Calculating emitter current", "Ic=alpha*Ie #Calculating collector current", "Ib=Ic/Beta #Calculating base current", "", "Vc=Vcc-Ic*Rc #Calculating collector volatge", "", "Vce=Vc-Ve #Calculating voltage between collector and emitter", "", "Ie=Ie*10**6 #Calculating emitter current", "", "Ic=Ic*10**6 #Calculating collector current", "", "Ib=Ib*10**6 #Calculating base current", "", "# by approximating, because Vee>>Vbe", "", "Ieapprox=Vee/(2*Re) #calculating emitter current by approximation", "Ieapprox=Ieapprox*10**6 #calculating emitter current by approximation", "", "#Results:", "print('Ie= %.1f uA'%Ie)", "print('\\nIc= %.1f uA'%Ic)", "print('\\nIb= %.3f uA'%Ib)", "print('\\nVc= %.3f V'%Vc)", "print('\\nVce= %.3f V'%Vce)", "", "print('\\nIe (approx)= %.2f uA'%Ieapprox)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ie= 110.0 uA", "", "Ic= 108.9 uA", "", "Ib= 1.089 uA", "", "Vc= 7.921 V", "", "Vce= 8.621 V", "", "Ie (approx)= 115.38 uA" ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "source": [ "<h3>Example No.2.9, Page No.89<h3>" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "#Variable Declaration:", "import math", "Vdd=12.0 #Voltage Vdd in volt", "Vss=-12.0 #Voltage Vss in volt", "Iss=175.0*10**-6 #Current Iss in amperes", "Rd=65.0*10**3 #resistance Rd in ohm", "kn=3.0*10**-3 #Transconductance", "Vth=1.0 #Voltage Vth in volt", "", "#Calculations:", "Ids=Iss/2.0 #Calculating Ids", "", "Vgs=Vth + math.sqrt(Iss/kn) #Calculating Vgs", " ", "Vds = Vdd- Ids*Rd + Vgs #Calculating Vds", "", "#Requirement for saturation", "Vicmax= Vdd - Ids*Rd + Vth #Calculating Vicmax", "", "Ids=Ids*10**6 #Calculating Ids", "", "#Results:", "print('\\nIds=%.1f uA'% Ids)", "print('\\nVgs=%.3f V'%Vgs)", "print('\\nVds=%.2f V'% Vds)", "print('\\nVicmax=%.2f V'% Vicmax)", "print('\\nRequirement of saturation for M1 \\nfor non-zero Vic necessiates Vic <= 7.312 V')" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Ids=87.5 uA", "", "Vgs=1.242 V", "", "Vds=7.55 V", "", "Vicmax=7.31 V", "", "Requirement of saturation for M1 ", "for non-zero Vic necessiates Vic <= 7.312 V" ] } ], "prompt_number": 9 } ] } ] }