{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3 : Operational Amplifier Characteristics " ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.1 Page No.108" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "\n", "Ri = 10*10**3\n", "R1 = 10*10**6\n", "Acl = 10\n", "\n", "# Solution \n", "\n", "Rf = Acl * R1\n", "Rt = 47*10**3\n", "Rs = (Rt**2)/(Rf - (2*Rt))\n", "\n", "# Displaying the results\n", "\n", "print \"The value of Rf = \",Rf/10**6,\"Mega Ohms\"\n", "print \"Thevalue of Rs = \",Rs,\"Ohms\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Rf = 100 Mega Ohms\n", "Thevalue of Rs = 22 Ohms\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.2 Page No.110" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "\n", "Rf = 10*10**3\n", "R1 = 10**3\n", "Vios = 10*10**-3\n", "Ib = 300*10**-9\n", "Ios = 50*10**-9\n", "\n", "# Solution \n", "# Solution for part a\n", "Vot1 = (1 + (Rf/R1))*Vios + Rf*Ib\n", "# Solution for part b \n", "Rcomp = (Rf * R1)/(Rf + R1)\n", "# Solution for part c\n", "Vot2 = (1+(Rf/R1))*Vios + Rf*Ios \n", "\n", "# Displaying the values \n", "\n", "print \"The value of maximum output offset due to Vios and Ib = \", int( Vot1*10**3),\"mV\"\n", "print \"The value of Rcomp = \",Rcomp,\"Ohms\" # Given answer in the textbook is not correct please make the change \n", "print \"The value of maximum output offset if Rcomp is connected = \",Vot2*10**3,\"mV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of maximum output offset due to Vios and Ib = 113 mV\n", "The value of Rcomp = 909 Ohms\n", "The value of maximum output offset if Rcomp is connected = 110.5 mV\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3 Page No.111" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "\n", "Acl = 100\n", "Temp0 = 25\n", "Temp1 = 50\n", "Vodrift = 0.15*10**-3\n", "\n", "# Solution \n", "\n", "Vos = Vodrift * (Temp1 - Temp0)\n", "Vo = Vos * Acl\n", "\n", "# Displaying the results \n", "\n", "print \"The value of Input offset voltage = \",Vos*10**3,\"mV\"\n", "print \"The value of Ooutput voltage = \",int(Vo*10**3),\"mV\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of Input offset voltage = 3.75 mV\n", "The value of Ooutput voltage = 375 mV\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.4 Page No.125" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "from scipy import signal\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "Vpp = 6.0\n", "Frequency = 2*10**6\n", "\n", "# Solution \n", "\n", "WL = 1.0/Frequency # Calculating the wavelength \n", "SR = Vpp/(WL/2) # Calculating the slew rate\n", "\n", "# Displaying the results \n", "\n", "print \"The value of slew rate is =\",int(SR*10**-6),\"V/us\"\n", "\n", "# Ploting the result \n", "\n", "Vp = 3\n", "t = np.linspace(0, 1, 500)\n", "plt.plot(t, -Vp*abs(signal.sawtooth(2 * np.pi * 2 * t))) # Note : Triangular wave is the absolute of sawtooth wave\n", "plt.ylim(-3,0)\n", "plt.title(\"Output wave form of example 3.4\")\n", "plt.ylabel(\"Amplitude (V)\")\n", "plt.xlabel(\"Time(t)\")\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of slew rate is = 24 V/us\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.5 Page No.126" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "# Given data \n", "\n", "Acl = 50\n", "Slew_rate = 0.5\n", "frequency = 20*10**3\n", "# solution \n", "\n", "Vm = round((Slew_rate * 10**6)/(2*math.pi * frequency),2)\n", "Vo = 2 * Vm\n", "Vpeak_to_peak = Vo/Acl\n", "\n", "# Displaying the outputs \n", "\n", "print \"The peak voltage is =\",Vm,\"V peak\"\n", "print \"The peak to peak voltage =\",Vo,\"V peak to peak\"\n", "print \"The value of maximum input voltage is =\",int(Vpeak_to_peak*10**3),\"mVpeak to peak \" \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The peak voltage is = 3.98 V peak\n", "The peak to peak voltage = 7.96 V peak to peak\n", "The value of maximum input voltage is = 159 mVpeak to peak \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.6 Page No.127" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "\n", "Vptpi = 500*10**-3 #input peak to peak voltage \n", "Vptpo = 3\n", "Tr = 4*10**-6\n", "\n", "# Solution \n", "\n", "Vdelta = (0.9 - 0.1) * Vptpo\n", "SR = (Vdelta / Tr ) * 10**-6\n", "\n", "# Display the values \n", "\n", "print \"The value of delta V = \",Vdelta,\"V\"\n", "print \"The slew rate is = \",SR,\"V/us\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of delta V = 2.4 V\n", "The slew rate is = 0.6 V/us\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }